Constitutive relation: hypothesis 4

The fourth constitutive relation hypothesis states that the properties of a fluid are isotropic, i.e., independent of direction.

For example, an object moving in a fluid encounters the same resistance regardless of the direction of movement. From eq11, the properties of a fluid are described by βijkl , which must be isotropic.

As described in the articles on tensors, the general form of a fourth-order isotropic tensor is:

\beta_{ijkl}=\lambda\delta_{ij}\delta_{kl}+\mu\delta_{ik}\delta_{jl}+\nu\delta_{il}\delta_{jk}\; \; \; \; \; \; \; (12)

From eq11 of the previous article, τij is symmetric. Therefore, τij =τji and

\beta_{ijkl}=\beta_{jikl}

Substitute eq12 in the above equation, we have

\left ( \mu-\nu \right )\delta_{ik}\delta_{jl}=\left ( \mu-\nu \right )\delta_{il}\delta_{jk}

\mu=\nu\; \; \; \; \; \; \; (13)

Substitute eq13 in eq12,

\beta_{ijkl}=\lambda\delta_{ij}\delta_{kl}+\mu\left (\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}\right )\; \; \; \; \; \; \; (14)

Substitute eq14 in eq11,

\tau_{ij}=\frac{1}{2}\lambda\delta_{ij}\delta_{kl}\left ( \frac{\partial u_k}{\partial x_l}+\frac{\partial u_l}{\partial x_k}\right ) +\frac{1}{2}\mu\left (\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}\right )\left ( \frac{\partial u_k}{\partial x_l}+\frac{\partial u_l}{\partial x_k}\right )

\tau_{ij}=\frac{1}{2}\lambda\delta_{ij}\left ( \frac{\partial u_k}{\partial x_k}+\frac{\partial u_k}{\partial x_k}\right ) +\frac{1}{2}\mu\left (\delta_{ik}\frac{\partial u_k}{\partial x_j}+\delta_{ik}\frac{\partial u_j}{\partial x_k} +\delta_{il}\frac{\partial u_j}{\partial x_l}+\delta_{il}\frac{\partial u_l}{\partial x_j} \right )

\tau_{ij}=\lambda\delta_{ij} \frac{\partial u_k}{\partial x_k}+\mu\left (\frac{\partial u_i}{\partial x_j}+\frac{\partial u_j}{\partial x_i} \right )\; \; \; \; \; \; \; (15)

Substitute eq15 in eq3,

\sigma_{ij}=-p\delta_{ij}+\lambda\delta_{ij} \frac{\partial u_k}{\partial x_k}+\mu\left (\frac{\partial u_i}{\partial x_j}+\frac{\partial u_j}{\partial x_i} \right )\; \; \; \; \; \; \; (16)

The values of μ and λ can only be determined through experiments. μ is known as the shear viscosity of the fluid while λ is the volume viscosity of the fluid, which is zero for an incompressible fluid. Eq16 becomes:

\sigma_{ij}=-p\delta_{ij}+\mu\left (\frac{\partial u_i}{\partial x_j}+\frac{\partial u_j}{\partial x_i} \right )\; \; \; \; \; \; \; (17)

 

Question

Show that μ in eq16 and eq7 are the same.

Answer

Consider the flow of an incompressible fluid where the flow velocity components are u = u(y), v = 0 and w = 0. Using eq16, the stress components are:

\sigma_{11}=\sigma_{22}=\sigma_{33}=-p

\sigma_{12}=\sigma_{21}=\mu\frac{du}{dy}

with the remaining components equal to zero.

Clearly, the components of stress in this case include the pressure p and the shear stress  \mu\frac{du}{dy}, which is the result of the derivation of Newton’s law of viscosity, eq7. Hence, μ in eq16 and eq7 are the same.

 

 

Previous article: hypothesis 3
Content page of constitutive relation
Content page of advanced chemistry
Main content page