Electron density as a Fourier transform of the structure factor

The electron densities of atoms in a crystal are Fourier transforms of the structure factor.

 

In the article on scattering factor, we have restricted the electron density ρ to a lattice point, which is too simplistic. We have also described the scattering factor (eq27) as

df=\rho e^{i\phi}dV

or in its integrated form

f=\int \rho e^{i\phi}dV\; \; \; \; \; \; \; (40)

If we now extend the distribution of ρ through the unit cell, eq40 becomes the structure factor:

F_{hkl}=\int \rho 'e^{i\phi}dV

where ρ’ρ(xyz) is the electron density at coordinates xyz in the unit cell and \phi=2\pi(\frac{hx}{a}+\frac{ky}{b}+\frac{lz}{c} ), i.e.

F_{hkl}=\int \rho(xyz)e^{i2\pi(\frac{hx}{a}+\frac{ky}{b}+\frac{lz}{c} )}dV\; \; \; \; \; \; \; (41)

Let dV be an infinitesimal volume of the unit cell with edges dx, dy, dz that are parallel to the unit cell axes of a, b, c (volume of unit cell is V). The ratio of dV/V must be equal to (dxdydz)/abc and we can rewrite eq41 as

F_{hkl}=\frac{V}{abc}\int_{0}^{a}\int_{0}^{b}\int_{0}^{c}\rho (xyz)e^{i2\pi(\frac{hx}{a}+\frac{ky}{b}+\frac{lz}{c})}dxdydz\; \; \; \; \; \; \; (42)

A Fourier series is an expansion series used to represent a periodic function and is given by:

f(x)=\sum_{n=0}^{\infty }[A_ncos(nx)+B_nsin(nx)]

or by its complex form

f(x)=\sum_{n=-\infty }^{\infty }c_ne^{i\frac{2\pi nx}{a}}

Due to the repetitive arrangement of atoms in a crystal, the electron density in a crystal is also periodic and can be expressed as a Fourier series:

\rho (x)=\sum_{n=-\infty }^{\infty }c_ne^{i\frac{2\pi nx}{a}}\; \; \; \; \; \; \; (43)

In three dimensions, eq43 becomes

\rho (xyz)=\sum_{n=-\infty }^{\infty }\sum_{m=-\infty }^{\infty }\sum_{o=-\infty }^{\infty }c_{nmo}e^{i2\pi(\frac{nx}{a}+\frac{ my}{b}+\frac{ oz}{c})}\; \; \; \; \; \; \; (44)

Substitute eq44 in eq42

F_{hkl}=\frac{V}{abc}\int_{0}^{a}\int_{0}^{b}\int_{0}^{c}\sum_{n=-\infty }^{\infty }\sum_{m=-\infty }^{\infty }\sum_{o=-\infty }^{\infty }c_{nmo}e^{i2\pi(\frac{nx}{a}+\frac{my}{b}+\frac{oz}{c})} e^{i2\pi(\frac{hx}{a}+\frac{ky}{b}+\frac{lz}{c})}dxdydz

F_{hkl}=\frac{V}{abc}\sum_{n=-\infty }^{\infty }\sum_{m=-\infty }^{\infty }\sum_{o=-\infty }^{\infty }c_{nmo}\int_{0}^{a}e^{i2\pi\frac{x}{a}(n+h)}dx\int_{0}^{b}e^{i2\pi\frac{y}{b}(m+k)}dy\int_{0}^{c}e^{i2\pi\frac{z}{c}(o+l)}dz\; \; \; \; (45)

If n ≠ –h,

\int_{0}^{a}e^{i2\pi\frac{x}{a}(n+h)}dx=\int_{0}^{a}[cos2\pi\frac{x}{a}(n+h)+isin2\pi\frac{x}{a}(n+h)]dx

=\int_{0}^{a}cos2\pi\frac{x}{a}(n+h)dx=0

which makes Fhkl = 0.

Similarly, Fhkl = 0 if m ≠ -k or o ≠ -l. Therefore, the surviving term in the triple summation in eq45 corresponds to the case of n = –hm = –k, o = –l, giving

F_{hkl}=\frac{V}{abc}c_{-h,-k,-l}\int_{0}^{a}dx\int_{0}^{b}dy\int_{0}^{c}dz=Vc_{-h,-k,-l}

c_{-h,-k,-l}=\frac{F_{hkl}}{V}\; \; \; \; \; \; \; (46)

When n = –hm = –k, o = –l, eq44 becomes

\rho (xyz)=\sum_{-h=-\infty }^{\infty }\sum_{-k=-\infty }^{\infty }\sum_{-l=-\infty }^{\infty } c_{-h,-k,-l}e^{-i2\pi(\frac{hx}{a}+\frac{ky}{b}+\frac{lz}{c})}

Since \sum_{-h=-\infty }^{\infty }\sum_{-k=-\infty }^{\infty }\sum_{-l=-\infty }^{\infty }=\sum_{h=\infty }^{-\infty }\sum_{k=\infty }^{-\infty }\sum_{l=\infty }^{-\infty }=\sum_{h=-\infty }^{\infty }\sum_{k=-\infty }^{\infty }\sum_{l=-\infty }^{\infty }

\rho (xyz)=\sum_{h=-\infty }^{\infty }\sum_{k=-\infty }^{\infty }\sum_{l=-\infty }^{\infty }c_{-h,-k,-l}e^{-i2\pi(\frac{hx}{a}+\frac{ky}{b}+\frac{lz}{c})}\; \; \; \; \; \; \; (47)

Substitute eq46 in eq47

\rho (xyz)=\frac{1}{V}\sum_{h=-\infty }^{\infty }\sum_{k=-\infty }^{\infty }\sum_{l=-\infty }^{\infty }F_{hkl}e^{-i2\pi(\frac{hx}{a}+\frac{ky}{b}+\frac{lz}{c})}\; \; \; \; \; \; \; (48)

Since the limits of the integrals in eq42 can be changed to run from to without affecting the values of the integrals because is zero outside the crystal, we have

Eq48 and eq48a are a Fourier transform pair. As mentioned in the previous article, the intensity of a diffraction signal is proportional to the square of the magnitude of the three-dimensional structure factor, i.e. I \propto \left | F_{hkl} \right |^2. If we know the value of Fhkl (which in principle is the square root of the intensity of a peak from an X-ray diffraction experiment \sqrt{\left | F_{hkl} \right |^2}=\left | F_{hkl} \right | ) and having indexed the plane contributing to this intensity peak (i.e. knowing the h, k, l values), we can determine ρ(xyz) using a mathematical software. The solution to ρ(xyz) is an electron density map that elucidates bond lengths and bond angles of the compound. However, a problem called the phase problem arises.

 

next article: phase problem
previous article: structure factor
Content page of X-ray crystallography
Content page of advanced chemistry
Main content page