Derivation of Stokes’ law

The derivation of Stokes’ law involves a few steps. Firstly, we shall derive the expression  \frac{\partial p}{\partial r}=\frac{\mu}{r^2sin\theta}\frac{\partial }{\partial \theta}E^2\psi. Substituting eq33b in eq33, we have:

\nabla p=-\mu\nabla\times\left ( \nabla\times\textbf{\textit{u}}\right )\; \; \; \; \; \; \; (47)

Substituting eq35b in eq47 and working out the algebra, we get:

\nabla p=\mu\left ( \frac{1}{r^2sin\theta} \frac{\partial }{\partial \theta}E^2\psi\right )\hat{r}-\mu\left ( \frac{1}{rsin\theta}\frac{\partial }{\partial r}E^2\psi \right )\hat{\theta}

The gradient of a function p in spherical coordinates is \nabla p= \frac{\partial p}{\partial r}\hat{r}+\frac{1}{r}\frac{\partial p}{\partial \theta}\hat{\theta}+\frac{1}{rsin\theta}\frac{\partial p}{\partial \phi}\hat{\phi}. Since fluid flow is along the z-axis, \nabla p= \frac{\partial p}{\partial r}\hat{r}+\frac{1}{r}\frac{\partial p}{\partial \theta}\hat{\theta}, which when compared with the above equation:

\frac{\partial p}{\partial r}=\frac{\mu}{r^2sin\theta}\frac{\partial }{\partial \theta}E^2\psi\; \; \; \; and\; \; \; \; \frac{1}{r}\frac{\partial p}{\partial \theta}=-\frac{\mu}{rsin\theta}\frac{\partial }{\partial r}E^2\psi\; \; \; \;\; \; \; (48)

Next, we shall show that E^2\psi=\frac{3}{2}\textbf{\textit{u}}\frac{a}{r}sin^2\theta. From a previous articleE^2=\frac{\partial ^2}{\partial r^2}+\frac{sin\theta}{r^2}\frac{\partial }{\partial \theta}\left ( \frac{1}{sin\theta}\frac{\partial }{\partial \theta} \right ), and so,

E^2\psi=\frac{\partial ^2}{\partial r^2}\psi+\frac{sin\theta}{r^2}\frac{\partial }{\partial \theta}\left ( \frac{1}{sin\theta}\frac{\partial }{\partial \theta} \right )\psi\; \; \; \; \; \; \; (49)

Substituting eq44 in eq49 and working out the algebra, we have:

E^2\psi=\frac{3}{2}\textbf{\textit{u}}\frac{a}{r}sin^2\theta\; \; \; \; \; \; \; (50)

Substituting eq50 in the first equation of eq48 and integrating, we have:

\int_{p}^{p_\infty }dp=\int_{r}^{r_\infty }\left [ \frac{\mu}{r^2sin\theta}\frac{\partial }{\partial \theta}\left ( \frac{3}{2} \textbf{\textit{u}}\frac{a}{r}sin^2\theta\right ) \right ]dr

p=p_\infty -\frac{3\mu\textbf{\textit{u}}a}{2r^2}cos\theta\; \; \; \; \; \; \; (51)

With reference to the diagram above, the stress τ on the sphere in the z-direction is given by the sum of the projections of τrr and τrθ on the z-axis:

\tau=\tau_{rr}cos\theta+\left [ -\tau_{r\theta}cos\left ( 90^o-\theta \right ) \right ]

\tau=\tau_{rr}cos\theta-\tau_{r\theta}sin\theta\; \; \; \; \; \; \; (52)

From the articles on constitutive relation\sigma_{ij}=-p\delta_{ij}+\mu\left ( \frac{\partial u_i}{\partial x_j} +\frac{\partial u_j}{\partial x_i}\right ). So,

\tau_{rr}=-p+2\mu\frac{\partial u_r}{\partial r}\; \; \; \; \; \; \; (53)

\tau_{r\theta}=\mu\left ( r\frac{\partial }{\partial r}\frac{u_\theta}{r}+\frac{1}{r}\frac{\partial u_r}{\partial \theta} \right )\; \; \; \; \; \; \; (53a)

 

Question

Show that \tau_{r\theta}=\mu\left ( r\frac{\partial }{\partial r}\frac{u_\theta}{r}+\frac{1}{r}\frac{\partial u_r}{\partial \theta} \right ).

Answer

We need to convert the term \left ( \frac{\partial u_i}{\partial x_j} +\frac{\partial u_j}{\partial x_i}\right )  in \sigma_{ij}=-p\delta_{ij}+\mu\left ( \frac{\partial u_i}{\partial x_j} +\frac{\partial u_j}{\partial x_i}\right ), which is in Cartesian coordinates, to spherical coordinates. Let i =1 and j = 2,

\tau_{12}=\mu\left ( \frac{\partial u_1}{\partial x_2}+\frac{\partial u_2}{\partial x_1} \right )\; \; \; \; \; \; \; (53b)

In Cartesian coordinates, \nabla=\hat{x_1}\frac{\partial }{\partial x_1}+\hat{x_2}\frac{\partial }{\partial x_2}+\hat{x_3}\frac{\partial }{\partial x_3} and \textbf{\textit{u}}=u_1\hat{x_1}+u_2\hat{x_2}+u_3\hat{x_3}. So,

\left ( \frac{\partial u_1}{\partial x_2}+\frac{\partial u_2}{\partial x_1} \right )=\left ( \hat{x_2}\cdot \nabla \right )\left ( \textbf{\textit{u}}\cdot \hat{x_1}\right )+\left ( \hat{x_1}\cdot \nabla \right )\left ( \textbf{\textit{u}}\cdot \hat{x_2}\right )

Since \left ( \hat{x_2}\cdot \nabla \right ) and \left ( \hat{x_1}\cdot \nabla \right ) are scalars, we can rewrite the above as:

\left ( \frac{\partial u_1}{\partial x_2}+\frac{\partial u_2}{\partial x_1} \right )=\left [ \left ( \hat{x_2}\cdot \nabla \right )\textbf{\textit{u}}\right]\cdot \hat{x_1}+\left [ \left ( \hat{x_1}\cdot \nabla \right )\textbf{\textit{u}}\right ] \cdot \hat{x_2}\; \; \; \; \; \; \; (53c)

We can now replace the orthogonal Cartesian basis vectors with orthogonal spherical basis vectors in eq53c:

\left ( \frac{\partial u_1}{\partial x_2}+\frac{\partial u_2}{\partial x_1} \right )=\left [ \left ( \hat{\theta}\cdot \nabla \right )\textbf{\textit{u}}\right]\hat{r}+\left [ \left ( \hat{r}\cdot \nabla \right )\textbf{\textit{u}}\right ] \hat{\theta}

In spherical coordinates, \nabla=\frac{\partial }{\partial r}\hat{r}+\frac{1}{r}\frac{\partial }{\partial \theta}\hat{\theta}+\frac{1}{rsin\theta}\frac{\partial }{\partial \phi}\hat{\phi} and \textbf{\textit{u}}=u_r\hat{r}+u_\theta\hat{\theta}+u_\phi \hat{\phi}. So, working out the algebra and using the identities \frac{\partial \hat{r}}{\partial \theta}=\hat{\theta}\frac{\partial \hat{\theta}}{\partial \theta}=-\hat{r} and \frac{\partial \hat{\phi}}{\partial \theta}=0, the above equation becomes:

\left ( \frac{\partial u_1}{\partial x_2}+\frac{\partial u_2}{\partial x_1} \right )=r\frac{\partial }{\partial r}\left ( \frac{u_\theta}{r} \right )+\frac{1}{r}\frac{\partial u_r}{\partial \theta}\; \; \; \; \; \; \; (53d)

Substituting eq53d in eq53b completes the exercise.

 

Substitute eq45, eq51 and r = a (on the surface of the sphere) in eq53,

\tau_{rr}=-p_\infty +\frac{3\mu\textbf{\textit{u}}}{2a}cos\theta\; \; \; \; \; \; \; (54)

Substitute eq45, eq46 and r = a (on the surface of the sphere) in eq53a,

\tau_{r\theta}=-\frac{3\mu\textbf{\textit{u}}}{2a}sin\theta\; \; \; \; \; \; \; (55)

Substitute eq54 and eq55 in eq52,

\tau=-p_\infty cos\theta+\frac{3\mu\textbf{\textit{u}}}{2a}\; \; \; \; \; \; \; (56)

The drag on the sphere Fis therefore the integral of the stress vector over the surface area of the sphere:

F_D=\int_{0}^{2\pi}\int_{0}^{\pi}\tau a^2sin\theta d\theta d\phi

Substitute eq56 in the above integral,

F_D=-2\pi a^2\int_{0}^{\pi}p_\infty sin\theta cos\theta d\theta+3\pi a\mu \textbf{\textit{u}}\int_{0}^{\pi}sin\theta d\theta

Integrate by substituting x = sinθ, dx = cosθdθ, we have

F_D=6\pi a\mu\textbf{\textit{u}}\; \; \; \; \; \; \; (57)

where a is the radius of the sphere.

 

Previous article: solution of the differential equation, E2(E2ψ) = 0
Content page of Stokes’ law
Content page of advanced chemistry
Main content page