Exchange operator

The exchange operator \hat{P}_{ik} acts on a function resulting in the swapping of labels of any two identical particles, i.e.

\hat{P}_{ik}\psi(q_1,\cdots,q_i,\cdots,q_k,\cdots,q_n)=\psi(q_1,\cdots,q_k,\cdots,q_i,\cdots,q_n)

where the label q_n refers to the n-th particle.

If we apply \hat{P}_{ik} twice on the function,

\hat{P}_{ik}^{\; \; 2}f(\cdots,q_i,\cdots,q_k,\cdots)=\hat{P}_{ik}f(\cdots,q_k,\cdots,q_i,\cdots)=f(\cdots,q_i,\cdots,q_k,\cdots)

Therefore, \hat{P}_{ik}^{\; \; 2}=\hat{I}, where \hat{I} is the identity operator.

 

Question

Show that the eigenvalues of \hat{P}_{ik} are \lambda=\pm1.

Answer

If is an eigenfunction of , then \hat{P}_{ik}^{\; \; 2}\psi=\lambda\hat{P}_{ik}\psi=\lambda^{2}\psi. Since \hat{P}_{ik}^{\; \; 2}=\hat{I}, we have \psi=\lambda^{2}\psi. As an eigenfunction must be non-zero\lambda=\pm1.

 

Experiment data reveals that the wavefunction of a system of two identical fermions (particles with spin s=\frac{1}{2},\frac{3}{2},\frac{5}{2},\cdots)  is antisymmetric with respect to label exchange (i.e. the eigenvalue is -1 when the exchange operator acts on the wavefunction), while the wavefunction of a system of two identical bosons (s=0,1,2,\cdots) is symmetric with respect to label exchange (eigenvalue of +1). The antisymmetric property of fermion wavefunctions and the symmetric property of boson wavefunctions can be regarded as postulates of quantum mechanics.

For identical fermions, \hat{P}_{ik}\psi(\cdots,q_i,\cdots,q_k,\cdots)=-\psi(\cdots,q_k,\cdots,q_i,\cdots). Since the way we label identical particles cannot affect the state of the system, the commutation relation between \hat{P}_{ik} and the Hamiltonian is

\left [\hat{P}_{ik},\hat{H}\right ]\psi=\hat{P}_{ik}\hat{H}\psi-\hat{H}\hat{P}_{ik}\psi=E\hat{P}_{ik}\psi+\hat{H}\psi=-E\psi+E\psi=0

This implies that, for a system of identical fermions, we can select a common complete set of eigenfunctions for \hat{P}_{ik} and \hat{H}, with the eigenfunctions being antisymmetric under label exchange.

 

Question

Show that \hat{P}_{ik} commutes with \hat{{S}^{2}}^{(T)}, \hat{S}_z^{\; (T)}, \hat{S}_1^{\; 2}, \hat{S}_2^{\; 2}, \hat{\boldsymbol{\mathit{S}}}_1\cdot\hat{\boldsymbol{\mathit{S}}}_2, \hat{{L}^{2}}^{(T)}, \hat{L}_z^{\; (T)}, \hat{L}_{1z}, \hat{S}_{1z}, \hat{\boldsymbol{\mathit{S}}}^{(T)}\cdot\hat{\boldsymbol{\mathit{L}}}^{(T)}, \hat{J}^{2} and \hat{J}_z.

Answer

\left [ \hat{P}_{12},\hat{S}_1^{\; 2} \right ]\psi=s_1(s_1+1)\hbar^{2}\hat{P}_{12}\psi+\hat{S}_1^{\;2}\psi=-s_1(s_1+1)\hbar^{2}\psi+s_1(s_1+1)\hbar^{2}\psi=0

Similarly, \left [ \hat{P}_{12},\hat{S}_2^{\; 2} \right ]=0. For \hat{{S}^{2}}^{(T)} and \hat{S}_z^{\;(T)}, we have \hat{{S}^{2}}^{(T)}\psi=S(S+1)\hbar^{2}\psi and \hat{S}_z^{\;(T)}\psi=m_S\hbar\psi respectively. So \left [\hat{P}_{12} ,\hat{{S}^{2}}^{(T)}\right ]=0 and \left [\hat{P}_{12} ,\hat{S}_z^{\;(T)}\right ]=0. Since \hat{{S}^{2}}^{(T)}=\hat{S}_1^{\;2}+2\hat{\boldsymbol{\mathit{S}}}_1\cdot\hat{\boldsymbol{\mathit{S}}}_2+\hat{S}_2^{\;2}, we have \left [\hat{P}_{12},\hat{\boldsymbol{\mathit{S}}}_1\cdot\hat{\boldsymbol{\mathit{S}}}_2\right ]=0. Similarly, \hat{P}_{12} commutes with \hat{{L}^{2}}^{(T)}, \hat{L}_z^{\;(T)}, \hat{L}_{1z} and \hat{S}_{1z}.

Next, \left [\hat{P}_{12},\hat{\boldsymbol{\mathit{S}}}^{(T)}\cdot\hat{\boldsymbol{\mathit{L}}}^{(T)}\right ]=\left [\hat{P}_{12},\left ( \hat{\boldsymbol{\mathit{S}}}_1+\hat{\boldsymbol{\mathit{S}}}_2\right )\cdot\left ( \hat{\boldsymbol{\mathit{L}}}_1+\hat{\boldsymbol{\mathit{L}}}_2\right )\right ]. Expanding this equation using eq76 and eq179, and noting that \left [\hat{P}_{12},\hat{L}_{mk}\right ]=0 and \left [\hat{P}_{12},\hat{S}_{mk}\right ]=0, where m=1,2 and k=x,y,z, we have \left [\hat{P}_{12},\hat{\boldsymbol{\mathit{S}}}^{(T)}\cdot\hat{\boldsymbol{\mathit{L}}}^{(T)}\right ]=0. It follows that \left [\hat{P}_{12},\hat{J}^{2}\right ]=\left [\hat{P}_{12},\hat{{L}^{2}}^{(T)}\right ]+\left [\hat{P}_{12},\hat{{S}^{2}}^{(T)}\right ]+\left [\hat{P}_{12},2\hat{\boldsymbol{\mathit{S}}}^{(T)}\cdot\hat{\boldsymbol{\mathit{L}}}^{(T)}\right ]=0 and that \left [\hat{P}_{12},\hat{J}_z\right ]=\left [\hat{P}_{12},\hat{L}_z^{\; (T)}\right ]+\left [\hat{P}_{12},\hat{S}_z^{\; (T)}\right ]=0.

 

 

Next article: Pauli exclusion principle
Previous article: BB84 protocol
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Leave a Reply

Your email address will not be published. Required fields are marked *