Classical orbital angular momentum

The classical definition of angular momentum is a pseudo-vector, which can be separated into its 3 components in Cartesian coordinates as follows:

If \boldsymbol{\mathit{A}} and \boldsymbol{\mathit{B}} are two vectors

\boldsymbol{\mathit{A}}=\boldsymbol{\mathit{i}}A_x+\boldsymbol{\mathit{j}}A_y+\boldsymbol{\mathit{k}}A_z\; \; \; \; \; \;\boldsymbol{\mathit{B}}=\boldsymbol{\mathit{i}}B_x+\boldsymbol{\mathit{j}}B_y+\boldsymbol{\mathit{k}}B_z

where A_x is the component of A in the x-direction and \boldsymbol{\mathit{i}},\boldsymbol{\mathit{j}},\boldsymbol{\mathit{k}} are unit vectors in the x,y,z directions.

The cross product of the two vectors is:

\boldsymbol{\mathit{C}}=\boldsymbol{\mathit{A}}\times\boldsymbol{\mathit{B}}=\boldsymbol{\mathit{i}}(A_yB_z-A_zB_y)+\boldsymbol{\mathit{j}}(A_zB_x-A_xB_z)+\boldsymbol{\mathit{k}}(A_xB_y-A_yB_x)\; \; \; \; \; \; \; \; 69

Since \boldsymbol{\mathit{C}}=\boldsymbol{\mathit{i}}C_x+\boldsymbol{\mathit{j}}C_y+\boldsymbol{\mathit{k}}C_z

C_x=A_yB_z-A_zB_y

C_y=A_zB_x-A_xB_z

C_z=A_xB_y-A_yB_x

Comparing eq59a and eq69,

\boldsymbol{\mathit{L}}=\boldsymbol{\mathit{r}}\times\boldsymbol{\mathit{p}}=\boldsymbol{\mathit{i}}(r_yp_z-r_zp_y)+\boldsymbol{\mathit{j}}(r_zp_x-r_xp_z)+\boldsymbol{\mathit{k}}(r_xp_y-r_yp_x)

and

L_x=r_yp_z-r_zp_y

L_y=r_zp_x-r_xp_z

L_z=r_xp_y-r_yp_x

L_x, L_y and L_z are the classical orbital angular momenta about the x-axis, y-axis and z-axis respectively. Since the magnitude of a vector \boldsymbol{\mathit{v}}=x\boldsymbol{\mathit{i}}+y\boldsymbol{\mathit{j}}+z\boldsymbol{\mathit{k}} is \vert\boldsymbol{\mathit{v}}\vert=\sqrt{x^{2}+y^{2}+z^{2}}, we have \vert\boldsymbol{\mathit{L}}\vert^{2}=L_{x}^{\, \, 2}+L_{y}^{\, \, 2}+L_{z}^{\, \, 2} or simply

L^{2}=L_{x}^{\, \, 2}+L_{y}^{\, \, 2}+L_{z}^{\, \, 2}\; \; \; \; \; \; \; \; 70

In other words, L^{2} is square of the magnitude of the vector \boldsymbol{\mathit{L}}. The significance of L^{2} will be explored in subsequent articles.

 

Question

Show that \boldsymbol{\mathit{\tau}}=\frac{d\boldsymbol{\mathit{L}}}{dt}.

Answer

From eq59a,

\frac{d\boldsymbol{\mathit{L}}}{dt}=\boldsymbol{\mathit{r}}\times\frac{d\boldsymbol{\mathit{p}}}{dt}+\boldsymbol{\mathit{p}}\times\frac{d\boldsymbol{\mathit{r}}}{dt}=\boldsymbol{\mathit{r}}\times m\frac{d\boldsymbol{\mathit{v}}}{dt}+m\boldsymbol{\mathit{v}}\times\boldsymbol{\mathit{v}}=\boldsymbol{\mathit{r}}\times\boldsymbol{\mathit{F}}=\boldsymbol{\mathit{\tau}}

Hence,

\boldsymbol{\mathit{\tau}}=\frac{d\boldsymbol{\mathit{L}}}{dt}\; \; \; \; \; \; \; \; 71

 

Next article: quantum orbital angular momentum operators (Cartesian coordinates)
Previous article: relation between magnetic dipole moment and angular momentum
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Leave a Reply

Your email address will not be published. Required fields are marked *