Projection operator (quantum mechanics)

A projection operator \hat{P} is a linear operator that transforms a vector in the direction of another vector, i.e., it projects one vector onto another.

In general,

\hat{P}=\vert\boldsymbol{\mathit{u}}\rangle\langle\boldsymbol{\mathit{v}}\vert

\hat{P}\vert\boldsymbol{\mathit{w}}\rangle=(\vert\boldsymbol{\mathit{u}}\rangle\langle\boldsymbol{\mathit{v}}\vert)\vert\boldsymbol{\mathit{w}}\rangle=\vert\boldsymbol{\mathit{u}}\rangle(\langle\boldsymbol{\mathit{v}}\vert\boldsymbol{\mathit{w}}\rangle) =c\vert\boldsymbol{\mathit{u}}\rangle

where c is a scalar.

It is useful in quantum mechanics to have a projection operator that maps a vector onto another vector, which is part of a complete set of orthonormal basis vectors \left \{\boldsymbol{\mathit{i}} \right \} in a Hilbert space. We define the operator as:

\hat{P}_{\boldsymbol{\mathit{i}=\boldsymbol{\mathit{m}}}}=\vert\boldsymbol{\mathit{m}}\rangle\langle\boldsymbol{\mathit{m}}\vert

This allows us to project a vector \boldsymbol{\mathit{w}} onto the basis vector \boldsymbol{\mathit{m}}:

\hat{P}_{\boldsymbol{\mathit{i}=\boldsymbol{\mathit{m}}}}\vert\boldsymbol{\mathit{w}}\rangle=\vert\boldsymbol{\mathit{m}}\rangle\langle\boldsymbol{\mathit{m}}\vert\boldsymbol{\mathit{w}}\rangle=c\vert\boldsymbol{\mathit{m}}\rangle

If \boldsymbol{\mathit{w}} is a wavefunction \psi that is a linear combination of a complete set of orthonormal basis functions, i.e., \psi=\sum_{i=1}^{N}c_i\phi_i, then

\hat{P}_i\psi=\vert\phi_i\rangle\langle\phi_i\vert\psi\rangle=c_i\phi_i

When we measure an observable of a system whose state is described by \psi, we get an eigenvalue corresponding to an eigenfunction, which is one of the orthonormal basis functions in the complete set. We say that the wavefunction \psi is projected onto (or collapsed into) the eigenfunction \phi_i.

 

 

Next article: expectation value
Previous article: matrix elements of an operator
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Leave a Reply

Your email address will not be published. Required fields are marked *