Quantum orbital angular momentum operators (spherical coordinates)

The quantum orbital angular momentum operators in spherical coordinates are derived using the following diagram:

where

x=rsin\theta cos\phi\; \; \; \; y=rsin\theta sin\phi\; \; \; \; z=rcos\theta\; \; \; \; r=\sqrt{x^{2}+y^{2}+z^{2}}\; \; \; \; \; \; \; \; 77

Therefore,

\frac{\partial r}{\partial x}=\frac{\partial \sqrt{x^{2}+y^{2}+z^{2}}}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x}{r}=sin\theta cos\phi\; \; \; \; \; \; \; \; 78

Similarly,

\frac{\partial r}{\partial y}=sin\theta sin\phi\; \; \; \; \; \; \; \; 79

\frac{\partial r}{\partial z}= cos\theta\; \; \; \; \; \; \; \; 80

Furthermore, by differentiating cos\theta=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} implicitly with respect to x and separately with respect to y, and rearranging, we have

\frac{\partial\theta}{\partial x}=\frac{cos\theta cos\phi}{r}\; \; \; \; \; \; \; \; 81

\frac{\partial\theta}{\partial y}=\frac{cos\theta sin\phi}{r}\; \; \; \; \; \; \; \; 82

 

Question

Show that sin\phi=\frac{y}{\sqrt{x^{2}+y^{2}}}, cos\phi=\frac{x}{\sqrt{x^{2}+y^{2}}} and sin\theta=\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}+z^{2}}}.

Answer

To find expressions for sin\phi and cos\phi, we let \theta=\frac{\pi}{2} for the first three equations of eq77, which gives us x=rcos\phi, y=rsin\phi and z=0. So,

cos\phi=\frac{x}{\sqrt{x^{2}+y^{2}}}\; \; \; \; \; \;sin\phi=\frac{y}{\sqrt{x^{2}+y^{2}}}

Substituting these two expressions back into either the first or second equation of eq77, we have

sin\theta=\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}+z^{2}}}

 

Implicit differentiation of sin\theta=\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}+z^{2}}}sin\phi=\frac{y}{\sqrt{x^{2}+y^{2}}} and cos\phi=\frac{x}{\sqrt{x^{2}+y^{2}}} with respect to z, x and y respectively gives

\frac{\partial\theta}{\partial z}=-\frac{sin\theta}{r}\; \; \; \; \; \; \; \; 83

\frac{\partial\phi}{\partial x}=-\frac{sin\phi}{rsin\theta}\; \; \; \; \; \; \; \; 84

\frac{\partial\phi}{\partial y}=\frac{cos\phi}{rsin\theta}\; \; \; \; \; \; \; \; 85

Since \phi is independent of z

\frac{\partial\phi}{\partial z}=0\; \; \; \; \; \; \; \; 86

Applying the multivariable chain rule to f\left ( r,\theta,\phi \right ), we have:

\frac{\partial}{\partial x}=\frac{\partial r}{\partial x}\frac{\partial}{\partial r}+\frac{\partial\theta}{\partial x}\frac{\partial}{\partial \theta}+\frac{\partial\phi}{\partial x}\frac{\partial}{\partial \phi}\; \; \; \; \; \; \; \; 87

\frac{\partial}{\partial y}=\frac{\partial r}{\partial y}\frac{\partial}{\partial r}+\frac{\partial\theta}{\partial y}\frac{\partial}{\partial \theta}+\frac{\partial\phi}{\partial y}\frac{\partial}{\partial \phi}\; \; \; \; \; \; \; \; 88

\frac{\partial}{\partial z}=\frac{\partial r}{\partial z}\frac{\partial}{\partial r}+\frac{\partial\theta}{\partial z}\frac{\partial}{\partial \theta}+\frac{\partial\phi}{\partial z}\frac{\partial}{\partial \phi}\; \; \; \; \; \; \; \; 89

Substitute i) eq78, eq81 and eq84 in eq87, ii) eq79, eq82 and eq85 in eq88 and iii) eq80, eq83 and eq86 in eq89, we have

\frac{\partial}{\partial x}=sin\theta cos\phi\frac{\partial}{\partial r}+\frac{cos\theta cos\phi}{r}\frac{\partial}{\partial \theta}-\frac{sin\phi }{rsin\theta}\frac{\partial}{\partial \phi}\; \; \; \; \; \; \; \; \; \; 90

\frac{\partial}{\partial y}=sin\theta sin\phi\frac{\partial}{\partial r}+\frac{cos\theta sin\phi}{r}\frac{\partial}{\partial \theta}+\frac{cos\phi }{rsin\theta}\frac{\partial}{\partial \phi}\; \; \; \; \; \; \; \; \; \; 91

\frac{\partial}{\partial z}=cos\theta \frac{\partial}{\partial r}-\frac{sin\theta}{r}\frac{\partial}{\partial \theta}\; \; \; \; \; \; \; \; \; \; 92

respectively.

Substitute eq77, eq90, eq91 and eq92 in eq72, eq73 and eq74, we have

\hat{L}_x=\frac{\hbar}{i}\left ( -sin\phi\frac{\partial}{\partial \theta}-\frac{cos\theta cos\phi}{sin\theta}\frac{\partial}{\partial \phi}\right )\; \; \; \; \; \; \; \; 93

\hat{L}_y=\frac{\hbar}{i}\left (cos\phi\frac{\partial}{\partial \theta}-\frac{cos\theta sin\phi}{sin\theta}\frac{\partial}{\partial \phi}\right )\; \; \; \; \; \; \; \; 94

\hat{L}_z=\frac{\hbar}{i}\frac{\partial}{\partial \phi}\; \; \; \; \; \; \; \; 95

respectively.

Substitute eq93, eq94 and eq95 in eq75, we have, with some algebra

\hat{L}^{2}=-\hbar^{2}\left ( \frac{\partial^{2}}{\partial \theta^{2}}+\frac{1}{sin^{2}\theta}\frac{\partial^{2}}{\partial \phi^{2}}+\frac{cos\theta}{sin\theta}\frac{\partial}{\partial \theta}\right )

or equivalently

\hat{L}^{2}=-\hbar^{2}\left \[ \frac{1}{sin^{2}\theta}\frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{sin\theta}\frac{\partial}{\partial \theta}\left ( sin\theta\frac{\partial}{\partial \theta}\right )\right ]\; \; \; \; \; \; \; \; 96

\hat{L}^{2} is the quantum orbital angular momentum operator and each of its eigenvalues is the square of the orbital angular momentum of an electron.

Question

Show that eq76 is \frac{\hbar}{i}\left ( \boldsymbol{\mathit{\phi}}\frac{\partial}{\partial \theta}- \boldsymbol{\mathit{\theta}}\frac{1}{sin \theta}\frac{\partial}{\partial \phi}\right ) in spherical coordinates.

Answer

Substitute eq93, eq94, eq95 and unit vectors in spherical coordinates \boldsymbol{\mathit{i}}= \boldsymbol{\mathit{r}}sin\theta cos\phi+ \boldsymbol{\mathit{\theta}}cos\phi cos\theta-\boldsymbol{\mathit{\phi}}sin\phi, \boldsymbol{\mathit{j}}= \boldsymbol{\mathit{r}}sin\theta sin\phi+ \boldsymbol{\mathit{\theta}}cos\theta sin\phi-\boldsymbol{\mathit{\phi}}cos\phi and \boldsymbol{\mathit{k}}= \boldsymbol{\mathit{r}}cos\theta- \boldsymbol{\mathit{\theta}}sin\theta in eq76. we have, after some algebra, we have

\boldsymbol{\mathit{\hat{L}}}=\frac{\hbar}{i}\left ( \boldsymbol{\mathit{\phi}}\frac{\partial}{\partial\theta}- \boldsymbol{\mathit{\theta}}\frac{1}{sin\theta}\frac{\partial}{\partial\phi}\right )\; \; \; \; \; \; \; \; 97

 

Question

Show that \boldsymbol{\mathit{\hat{L}}}\cdot\boldsymbol{\mathit{\hat{L}}}=\hat{L}^{2}.

Answer

Substituting eq97 in \hat{L}^{2}=\boldsymbol{\mathit{L}}\cdot\boldsymbol{\mathit{L}} and using \frac{\partial\boldsymbol{\mathit{\phi}}}{\partial\theta}=0, \frac{\partial\boldsymbol{\mathit{\theta}}}{\partial\theta}=-\boldsymbol{\mathit{r}}, \frac{\partial\boldsymbol{\mathit{\phi}}}{\partial\phi}=-\boldsymbol{\mathit{r}} sin\theta-\boldsymbol{\mathit{\theta}}cos\theta and \frac{\partial\boldsymbol{\mathit{\theta}}}{\partial\phi}=\boldsymbol{\mathit{\phi}}cos\theta, we have

\hat{L}^{2}=\boldsymbol{\mathit{L}}\cdot\boldsymbol{\mathit{L}}=-\hbar^{2}\left [\frac{\partial^{2}}{\partial\theta^{2}}+\frac{cos\theta}{sin\theta}\frac{\partial}{\partial\theta}+\frac{1}{sin^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}\right ]\; \; \; \; \; \; \; \; 98

 

 

Next article: commutation relations of quantum orbital angular momentum operators
Previous article: quantum orbital angular momentum operators (cartesian coordinates)
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Leave a Reply

Your email address will not be published. Required fields are marked *