Commutation relations of quantum orbital angular momentum operators

The three orbital angular momentum component operators do not commute with one another.

To show that \left [ \hat{L}_x,\hat{L}_y \right ]\neq 0, we substitute eq72 and eq73 in \left [ \hat{L}_x,\hat{L}_y \right ], giving \left [ \hat{L}_x,\hat{L}_y \right ]=\hbar^{2}\left [ x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}\right ], which when substituted with eq74, returns

\left [ \hat{L}_x,\hat{L}_y \right ]=i\hbar\hat{L}_z\; \; \; \; \; \; \; \; 99

Repeating the above procedure, we get

\left [ \hat{L}_y,\hat{L}_z \right ]=i\hbar\hat{L}_x\; \; \; \; \; \; \; \; 100

\left [ \hat{L}_z,\hat{L}_x \right ]=i\hbar\hat{L}_y\; \; \; \; \; \; \; \; 101

Hence, each of the three orbital angular momentum component operators do not commute with the other two. Next, to show that \hat{L}^{2} commutes with all 3 orbital angular momentum component operators, we begin with

\small \left [ \hat{L}^{2},\hat{L}_x \right ]=\left (\hat{L}_x^{\; 2}+\hat{L}_y^{\; 2}+\hat{L}_z^{\; 2}\right )\hat{L}_x-\hat{L}_x\left (\hat{L}_x^{\; 2}+\hat{L}_y^{\; 2}+\hat{L}_z^{\; 2}\right )=\left [ \hat{L}_y^{\; 2},\hat{L}_x \right ]+\left [ \hat{L}_z^{\; 2},\hat{L}_x \right ]

Using the identity \small \left [ \hat{L}_a^{\; 2},\hat{L}_b \right ]=\hat{L}_a\left [ \hat{L}_a,\hat{L}_b \right ]+\left [ \hat{L}_a,\hat{L}_b \right ]\hat{L}_a,

\small \left [ \hat{L}^{2},\hat{L}_x \right ]=\hat{L}_y\left [ \hat{L}_y,\hat{L}_x \right ]+\left [ \hat{L}_y,\hat{L}_x \right ]\hat{L}_y +\hat{L}_z\left [ \hat{L}_z,\hat{L}_x \right ]+\left [ \hat{L}_z,\hat{L}_x \right ]\hat{L}_z

Substitute eq99 and eq101 in the above equation, noting that \small \left [ \hat{L}_a,\hat{L}_b \right ]=-\left [ \hat{L}_b,\hat{L}_a \right ], we have \small \left [ \hat{L}^{2},\hat{L}_x \right ]=0. Repeating the steps for \small \left [ \hat{L}^{2},\hat{L}_y \right ] and \small \left [ \hat{L}^{2},\hat{L}_z \right ] gives

\small \left [ \hat{L}^{2},\hat{L}_x \right ]=0\; \; \; \;\left [ \hat{L}^{2},\hat{L}_y \right ]=0\; \; \; \;\left [ \hat{L}^{2},\hat{L}_z \right ]=0\; \; \; \; \; \; \; \; 102

As mentioned in an earlier article, a common complete set of eigenfunctions can be selected for two operators only if they commute. Therefore, \small \hat{L}^{2} shares a common set of eigenfunctions with each of \small \hat{L}_x, \small \hat{L}_y and \small \hat{L}_z, but we cannot select a common set of eigenfunctions for any pair of angular momentum component operators.

 

Question

Show that each of the three orbital angular momentum component operators commute with \small p^{2}, \small \hat{p}^{2}, \small r, \small r^{2} and \small \frac{1}{r}, where \small p^{2}=p_x^{\; 2}+p_y^{\; 2}+p_z^{\; 2} and \small r^{2}=x^{\; 2}+y^{\; 2}+z^{\; 2}.

Answer

Substituting eq74 in \small \left [ \hat{L}_z,x \right ], \small \left [ \hat{L}_z,y \right ], \small \left [ \hat{L}_z,z \right ], \small \left [ \hat{L}_z,p_x \right ], \small \left [ \hat{L}_z,p_y \right ] and \small \left [ \hat{L}_z,p_z \right ] (noting that \small p_i=m\frac{i}{t}, where \small i=x,y,z) and carrying out the derivatives, we have

\small \left [ \hat{L}_z,x \right ]=i\hbar y\; \; \; \; \;\left [ \hat{L}_z,y \right ]=-i\hbar x\; \; \; \; \;\left [ \hat{L}_z,z \right ]=0

\small \left [ \hat{L}_z,p_x \right ]=i\hbar p_y\; \; \; \; \;\left [ \hat{L}_z,p_y \right ]=-i\hbar p_x\; \; \; \; \;\left [ \hat{L}_z,p_z \right ]=0

Using the identities \small \left [ \hat{A},\hat{B}+\hat{C}+\hat{D} \right ]=\left [ \hat{A},\hat{B} \right ]+\left [ \hat{A},\hat{C} \right ]+\left [ \hat{A},\hat{D} \right ] and \small \left [ \hat{A},\hat{B}\hat{C} \right ]=\left [ \hat{A}\hat{B} \right ]\hat{C}+\hat{B}\left[\hat{A},\hat{C} \right ],

\small \left [ \hat{L}_z,r^{2} \right ]=\left [ \hat{L}_z,x^{2}+y^{2}+z^{2}\right ]=0

\small \left [ \hat{L}_z,r \right ]=\left [ \hat{L}_z,\sqrt{x^{2}+y^{2}+z^{2}}\right ]=0

\small \left [ \hat{L}_z,\frac{1}{r} \right ]=\left [ \hat{L}_z,\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\right ]=0

\small \left [ \hat{L}_z,p^{2} \right ]=\left [ \hat{L}_z,p_x^{\; 2}+p_y^{\; 2}+p_z^{\; 2}\right ]=0\; \; \; \; \; \; \; \; 103

\small \left [ \hat{L}_z,\hat{p}^{2} \right ]=0 can be inferred from eq103. Repeating the same logic for \small \hat{L}_x and \small \hat{L}_y. we have

\small \left [ \hat{L}_i,r^{2} \right ]=0\; \; \; \;\left [ \hat{L}_i,r \right ]=0\; \; \; \;\left [ \hat{L}_i,\frac{1}{r} \right ]=0\; \; \; \;\left [ \hat{L}_i,p^{2} \right ]=0\; \; \; \;\left [ \hat{L}_i,\hat{p}^{2}\right ]=0\; \; \; \; \; \; \; \; 104

 

The commutation relations in the above Q&A are applicable to hydrogenic systems. For a system of 2-electrons, there are cross terms like:

\small \left [ \hat{L}_{1z},\frac{1}{r_2} \right ]=\left [ \hat{L}_{1z},\frac{1}{\sqrt{x_2^{\; 2}+y_2^{\; 2}+z_2^{\; 2}}} \right ]=0\; \; \; \; \; \; \; \; 105

which are useful in determining the commutation relations between \small \hat{L}^{2} and the multi-electron Hamiltonian, for example \small \left [ \hat{L}_{1z}+\hat{L}_{2z},\frac{1}{r_1}+\frac{1}{r_2} \right ]=0.

 

Question

Show that \small \left [ \hat{L}^{2},\hat{p}^{2} \right ]=0 and \small \left [ \hat{L}^{2},\frac{1}{r} \right ]=0.

Answer

Using eq75 and the identities \small \left [ \hat{A},\hat{B}+\hat{C}+\hat{D} \right ]=\left [ \hat{A},\hat{B} \right ]+\left [ \hat{A},\hat{C} \right ]+\left [ \hat{A},\hat{D} \right ] and \small \left [ \hat{A},\hat{B}\hat{C} \right ]=\left [ \hat{A}\hat{B} \right ]\hat{C}+\hat{B}\left[\hat{A},\hat{C} \right ],

\small \left [ \hat{L}^{2},\hat{p}^{2} \right ]=\left [ \hat{L}_x^{\; 2}+\hat{L}_y^{\; 2}+\hat{L}_z^{\; 2},\hat{p}^{2} \right ]=0\; \; \; \; \; \; \; \; 106

\small \left [ \hat{L}^{2},\frac{1}{r} \right ]=\left [ \hat{L}_x^{\; 2}+\hat{L}_y^{\; 2}+\hat{L}_z^{\; 2},\frac{1}{r}\right ]=0\; \; \; \; \; \; \; \; 107

 

 

Next article: quantum orbital angular momentum ladder operators
Previous article: quantum orbital angular momentum operators (spherical coordinates)
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Leave a Reply

Your email address will not be published. Required fields are marked *