Matrix elements of angular momentum ladder operators

From eq132 of the previous article, we have

\small \hat{L}_z\vert l,m_l+1\rangle=(m_l+1)\hbar\vert l,m_l+1\rangle\; \; \; \; \; \; \; \; 134

From eq113 where k=1 and eq130, we have

\small \hat{L}_z\hat{L}_+\vert l,m_l\rangle=(m_l+1)\hbar\hat{L}_+\vert l,m_l\rangle\; \; \; \; \; \; \; \; 135

Comparing eq134 and eq135, both eigenstates \small \vert l,m_l+1\rangle and \small \hat{L}_+\vert l,m_l\rangle are associated with the same eigenvalue \small (m_l+1)\hbar. Therefore, one must be proportional to the other (e.g. the eigenstates \small e^{-ikx} and \small Ae^{-ikx} have the same eigenvalue), i.e.

\small \hat{L}_+\vert l,m_l\rangle=c_+\vert l,m_l+1\rangle\; \; \; \; \; \; \; \; 136

Similarly, for the lowering operator (using eq114), we have,

\small \hat{L}_-\vert l,m_l\rangle=c_-\vert l,m_l-1\rangle\; \; \; \; \; \; \; \; 137

where \small c_+ and \small c_- are scalars; or in summary

\small \hat{L}_\pm\vert l,m_l\rangle=c_\pm\vert l,m_l\pm 1\rangle\; \; \; \; \; \; \; \; 138

If the complete set of eigenstates is normalised, multiplying the above equation on the left by \small \langle l,m_l\pm1\vert gives the matrix elements of \small \hat{L}_\pm:

\small \langle l,m_l\pm 1\vert\hat{L}_\pm\vert l,m_l\rangle=c_\pm\; \; \; \; \; \; \; \; 139

From eq116, we have \small \hat{L}_-\hat{L}_+\vert l,m_l\rangle=(\hat{L}^{2}-\hat{L}_z^{\; 2}-\hbar\hat{L}_z)\vert l,m_l\rangle. Using eq132 and eq133,

\small \hat{L}_-\hat{L}_+\vert l,m_l\rangle=[l(l+1)-m_l(m_l+1)]\hbar^{2}\vert l,m_l\rangle\; \; \; \; \; \; \; \; 140

From eq136 and eq137

\small \hat{L}_-\hat{L}_+\vert l,m_l\rangle=c_+\hat{L}_-\vert l,m_l+1\rangle=c_+c_-\vert l,m_l\rangle\; \; \; \; \; \; \; \; 141

Comparing eq140 and eq141

\small c_+c_-=[l(l+1)-m_l(m_l+1)]\hbar^{2}\; \; \; \; \; \; \; \; 142

 

Question

Show that \small c_+c_-=\vert c_+\vert^{2}.

Answer

From eq139, where we let \small m_l=m_l+1

\small \langle l,m_l\vert\hat{L}_-\vert l,m_l+1\rangle=c_-

Substituting eq109 in the above equation

\small \langle l,m_l\vert\hat{L}_x\vert l,m_l+1\rangle-i\langle l,m_l\vert\hat{L}_y\vert l,m_l+1\rangle=c_-

Since \small \hat{L}_x and \small \hat{L}_y are Hermitian,

\small \left \{ \langle l,m_l+1\vert\hat{L}_x\vert l,m_l\rangle+i\langle l,m_l+1\vert\hat{L}_y\vert l,m_l\rangle\right \}^{*}=c_-

Substituting eq108 in the above equation

\small \langle l,m_l+1\vert\hat{L}_+\vert l,m_l\rangle^{*}=c_-

Substituting eq139 in the above equation

\small c_+^{\; *}=c_-\; \; \; \; \; \; \; \; 143

Therefore, \small c_+c_-=\vert c_+\vert^{2}.

 

Substituting \small c_+c_-=\vert c_+\vert^{2} in eq142

\small c_+=\hbar \sqrt{l(l+1)-m_l(m_l+1)}

Substituting the above equation in eq136,

\small \hat{L}_+\vert l,m_l\rangle=\hbar \sqrt{l(l+1)-m_l(m_l+1)}\; \vert l,m_l+1\rangle \; \; \; \; \; \; \; \; 144

To find \small c_-, we repeat the above steps for eq139 onwards and using eq115 to give

\small \hat{L}_+\hat{L}_-\vert l,m_l\rangle=\left ( \hat{L}^{2}-\hat{L}_z^{\; 2} +\hbar\hat{L}_z\right )\vert l,m_l\rangle=[l(l+1)-m_l(m_l-1)]\hbar^{2}\vert l,m_l\rangle\; \; \; \; \; \; \; \; 145

From eq137,

\small \hat{L}_+\hat{L}_-\vert l,m_l\rangle=c_-\hat{L}_+\vert l,m_l-1\rangle=c_-c_+\vert l,m_l\rangle\; \; \; \; \; \; \; \; 146

Comparing eq145 and eq146,

\small c_-c_+=[l(l+1)-m_l(m_l-1)]\hbar^{2}

Substituting eq143, where \small c_+=c_-^{\; *}, in the above equation

\small c_-=\hbar\sqrt{l(l+1)-m_l(m_l-1)}

Substituting the above equation in eq137,

\small \hat{L}_-\vert l,m_l\rangle=\hbar\sqrt{l(l+1)-m_l(m_l-1)}\vert l,m_l-1\rangle\; \; \; \; \; \; \; \; 147

Combining eq144 and eq147

\small \hat{L}_\pm\vert l,m_l\rangle=\hbar\sqrt{l(l+1)-m_l(m_l\pm1)}\vert l,m_l\pm1\rangle\; \; \; \; \; \; \; \; 148

 

Next article: the vector model of quantum angular momentum
Previous article: eigenvalues of quantum orbital angular momentum operators
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Leave a Reply

Your email address will not be published. Required fields are marked *