Matrix elements of angular momentum ladder operators

The matrix elements of angular momentum ladder operators play a crucial role in quantum mechanics, facilitating transitions between different angular momentum states and providing insight into the underlying symmetry of quantum systems.

From eq132 of the previous article, we have

\small \hat{L}_z\vert l,m_l+1\rangle=(m_l+1)\hbar\vert l,m_l+1\rangle\; \; \; \; \; \; \; \; 134

From eq113 where k=1 and eq130, we have

\small \hat{L}_z\hat{L}_+\vert l,m_l\rangle=(m_l+1)\hbar\hat{L}_+\vert l,m_l\rangle\; \; \; \; \; \; \; \; 135

Comparing eq134 and eq135, both eigenstates \small \vert l,m_l+1\rangle and \small \hat{L}_+\vert l,m_l\rangle are associated with the same eigenvalue \small (m_l+1)\hbar. Therefore, one must be proportional to the other (e.g. the eigenstates \small e^{-ikx} and \small Ae^{-ikx} have the same eigenvalue), i.e.

\small \hat{L}_+\vert l,m_l\rangle=c_+\vert l,m_l+1\rangle\; \; \; \; \; \; \; \; 136

Similarly, for the lowering operator (using eq114), we have,

\small \hat{L}_-\vert l,m_l\rangle=c_-\vert l,m_l-1\rangle\; \; \; \; \; \; \; \; 137

where \small c_+ and \small c_- are scalars; or in summary

\small \hat{L}_\pm\vert l,m_l\rangle=c_\pm\vert l,m_l\pm 1\rangle\; \; \; \; \; \; \; \; 138

If the complete set of eigenstates is normalised, multiplying the above equation on the left by \small \langle l,m_l\pm1\vert gives the matrix elements of \small \hat{L}_\pm:

\small \langle l,m_l\pm 1\vert\hat{L}_\pm\vert l,m_l\rangle=c_\pm\; \; \; \; \; \; \; \; 139

From eq116, we have \small \hat{L}_-\hat{L}_+\vert l,m_l\rangle=(\hat{L}^{2}-\hat{L}_z^{\; 2}-\hbar\hat{L}_z)\vert l,m_l\rangle. Using eq132 and eq133,

\small \hat{L}_-\hat{L}_+\vert l,m_l\rangle=[l(l+1)-m_l(m_l+1)]\hbar^{2}\vert l,m_l\rangle\; \; \; \; \; \; \; \; 140

From eq136 and eq137

\small \hat{L}_-\hat{L}_+\vert l,m_l\rangle=c_+\hat{L}_-\vert l,m_l+1\rangle=c_+c_-\vert l,m_l\rangle\; \; \; \; \; \; \; \; 141

Comparing eq140 and eq141

\small c_+c_-=[l(l+1)-m_l(m_l+1)]\hbar^{2}\; \; \; \; \; \; \; \; 142

 

Question

Show that \small c_+c_-=\vert c_+\vert^{2}.

Answer

From eq139, where we let \small m_l=m_l+1

\small \langle l,m_l\vert\hat{L}_-\vert l,m_l+1\rangle=c_-

Substituting eq109 in the above equation

\small \langle l,m_l\vert\hat{L}_x\vert l,m_l+1\rangle-i\langle l,m_l\vert\hat{L}_y\vert l,m_l+1\rangle=c_-

Since \small \hat{L}_x and \small \hat{L}_y are Hermitian,

\small \left \{ \langle l,m_l+1\vert\hat{L}_x\vert l,m_l\rangle+i\langle l,m_l+1\vert\hat{L}_y\vert l,m_l\rangle\right \}^{*}=c_-

Substituting eq108 in the above equation

\small \langle l,m_l+1\vert\hat{L}_+\vert l,m_l\rangle^{*}=c_-

Substituting eq139 in the above equation

\small c_+^{\; *}=c_-\; \; \; \; \; \; \; \; 143

Therefore, \small c_+c_-=\vert c_+\vert^{2}.

 

Substituting \small c_+c_-=\vert c_+\vert^{2} in eq142

\small c_+=\hbar \sqrt{l(l+1)-m_l(m_l+1)}

Substituting the above equation in eq136,

\small \hat{L}_+\vert l,m_l\rangle=\hbar \sqrt{l(l+1)-m_l(m_l+1)}\; \vert l,m_l+1\rangle \; \; \; \; \; \; \; \; 144

To find \small c_-, we repeat the above steps for eq139 onwards and using eq115 to give

\small \hat{L}_+\hat{L}_-\vert l,m_l\rangle=\left ( \hat{L}^{2}-\hat{L}_z^{\; 2} +\hbar\hat{L}_z\right )\vert l,m_l\rangle=[l(l+1)-m_l(m_l-1)]\hbar^{2}\vert l,m_l\rangle\; \; \; \; \; \; \; \; 145

From eq137,

\small \hat{L}_+\hat{L}_-\vert l,m_l\rangle=c_-\hat{L}_+\vert l,m_l-1\rangle=c_-c_+\vert l,m_l\rangle\; \; \; \; \; \; \; \; 146

Comparing eq145 and eq146,

\small c_-c_+=[l(l+1)-m_l(m_l-1)]\hbar^{2}

Substituting eq143, where \small c_+=c_-^{\; *}, in the above equation

\small c_-=\hbar\sqrt{l(l+1)-m_l(m_l-1)}

Substituting the above equation in eq137,

\small \hat{L}_-\vert l,m_l\rangle=\hbar\sqrt{l(l+1)-m_l(m_l-1)}\vert l,m_l-1\rangle\; \; \; \; \; \; \; \; 147

Combining eq144 and eq147

\small \hat{L}_\pm\vert l,m_l\rangle=\hbar\sqrt{l(l+1)-m_l(m_l\pm1)}\vert l,m_l\pm1\rangle\; \; \; \; \; \; \; \; 148

 

Next article: the vector model of quantum angular momentum
Previous article: eigenvalues of quantum orbital angular momentum operators
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Leave a Reply

Your email address will not be published. Required fields are marked *