Quantum orbital angular momentum ladder operators

The ladder operators of quantum orbital angular momentum are defined as:

\small \hat{L}_+=\hat{L}_x+i\hat{L}_y\; \; \; \; \; \; \; \; 108

\small \hat{L}_-=\hat{L}_x-i\hat{L}_y\; \; \; \; \; \; \; \; 109

where \small \hat{L}_+ is the raising operator and \small \hat{L}_- is the lowering operator.

To demonstrate why the operators are named as such, we substitute eq108 in \small \left [\hat{L}_+,\hat{L}_z\right ]:

\small \left [\hat{L}_+,\hat{L}_z\right ]=\left [\hat{L}_x+i\hat{L}_y,\hat{L}_z\right ]=\left [\hat{L}_x,\hat{L}_z\right ]+i\left [\hat{L}_y,\hat{L}_z\right ]

Substitute eq100 and eq101 in the above equation, noting that \small \left [ \hat{L}_a,\hat{L}_b \right ]=-\left [ \hat{L}_b,\hat{L}_a \right ],

\small \hat{L}_+\hat{L}_z-\hat{L}_z\hat{L}_+=-i\hbar\hat{L}_y-\hbar\hat{L}_x

\small \hat{L}_+\hat{L}_z=\hat{L}_z\hat{L}_+-\hbar\hat{L}_+\; \; \; \; \; \; \; \; 110

Similarly, we find

\small \hat{L}_-\hat{L}_z=\hat{L}_z\hat{L}_-+\hbar\hat{L}_-\; \; \; \; \; \; \; \; 111

If \small Y is an eigenfunction of \small \hat{L}_z with eigenvalue \small c,

\small \hat{L}_z Y=cY\; \; \; \; \; \; \; \; 112

Operating on eq112 with \small \hat{L}_+, we have \small \hat{L}_+\hat{L}_z Y=c\hat{L}_+Y. Substitute eq110 in the this equation and rearranging, we have \small \hat{L}_z\hat{L}_+ Y=(c+\hbar)\hat{L}_+Y. So, \small \hat{L}_+Y is an eigenfunction of \small \hat{L}_z with eigenvalue \small (c+\hbar). Operating on eq112 with \small \hat{L}_+ transforms \small Y into another eigenfunction \small \hat{L}_+ Y with an eigenvalue higher than c by \small \hbar. If we operate on eq112 with \small \hat{L}_+ twice, we have

\small \hat{L}_+\hat{L}_z\hat{L}_+ Y=(c+\hbar)\hat{L}_+^{\; 2}Y

\small \left ( \hat{L}_z\hat{L}_+-\hbar\hat{L}_+\right )\hat{L}_+ Y=(c+\hbar)\hat{L}_+^{\; 2}Y

\small \hat{L}_z\hat{L}_+^{\; 2}Y=(c+2\hbar)\hat{L}_+^{\; 2}Y

By mathematical induction,

\small \hat{L}_z\hat{L}_+^{\; k}Y=(c+k\hbar)\hat{L}_+^{\; k}Y \; \; \; \; \; k=0,1,2,\cdots\; \; \; \; \; \; \; \; 113

Similarly, if we operate on eq112 \small k times with \small \hat{L}_-, we have

\small \hat{L}_z\hat{L}_-^{\; k}Y=(c-k\hbar)\hat{L}_-^{\; k}Y \; \; \; \; \; k=0,1,2,\cdots\; \; \; \; \; \; \; \; 114

In other words, the raising operator progressively raises the eigenvalue of \small Y by \small \hbar, while the lowering operator progressively lowers the eigenvalue of \small Y by \small \hbar, i.e. each operator generate a ladder of eigenvalues.

 

Question

Show that \small \hat{L}_+\hat{L}_-=\hat{L}^{2}-\hat{L}_z^{\; 2}+\hbar\hat{L}_z.

Answer

Substituting eq108 and eq109 in \small \hat{L}_+\hat{L}_-,

\small \hat{L}_+\hat{L}_-=\hat{L}_x^{\; 2}-i\hat{L}_x\hat{L}_y+i\hat{L}_y\hat{L}_x+\hat{L}_y^{\; 2}

Substitute eq75 in the above equation and then eq99 in the resultant equation, noting that \small \left [ \hat{L}_a,\hat{L}_b \right ]=-\left [ \hat{L}_b,\hat{L}_a \right ],

\small \hat{L}_+\hat{L}_-=\hat{L}^{2}-\hat{L}_z^{\; 2}+\hbar\hat{L}_z\; \; \; \; \; \; \; \; 115

Similarly,

\small \hat{L}_-\hat{L}_+=\hat{L}^{2}-\hat{L}_z^{\; 2}-\hbar\hat{L}_z\; \; \; \; \; \; \; \; 116

 

If \small Y is simultaneously also an eigenfunction of \small \hat{L}^{2} with eigenvalue \small b,

\small \hat{L}^{2}Y=bY\; \; \; \; \; \; \; \; 117

 

Question

Show that \small \hat{L}^{2} commutes with \small \hat{L}_\pm ^{\; k}.

Answer

For \small k=1,  we have \small \left [ \hat{L}^{2},\hat{L}_ \pm \right ]=\left [ \hat{L}^{2},\hat{L}_ x\pm i\hat{L}_ y\right ]=\left [ \hat{L}^{2},\hat{L}_ x\right ]\pm i\left [ \hat{L}^{2},\hat{L}_ y\right ]. Since \small \left [ \hat{L}^{2},\hat{L}_ x \right ]=0 and \small \left [ \hat{L}^{2},\hat{L}_ y \right ]=0,

\small \left [ \hat{L}^{2},\hat{L}_ \pm \right ]=0

For \small k=2, we apply the identity \small \left [ \hat{A},\hat{B}\hat{C} \right ]=\left [ \hat{A},\hat{B}\right ]\hat{C}+\hat{B}\left [ \hat{A},\hat{C} \right ]:

\small \left [ \hat{L}^{2},\hat{L}_ \pm ^{\; 2}\right ]=\left [ \hat{L}^{2},\hat{L}_ \pm\right ]\hat{L}_ \pm+\hat{L}_ \pm\left [\hat{L}^{2},\hat{L}_ \pm\right]=0

By mathematical induction,

\small \left [ \hat{L}^{2},\hat{L}_\pm^{\; k} \right ]=0\; \; \; \; \; k=0,1,2,\cdots\; \; \; \; \; \; \; \; 118

 

Operating on eq117 with \small \hat{L}_\pm^{\; k} and using eq118

\small \hat{L}_\pm^{\; k} \hat{L}^{2}Y=b\hat{L}_\pm^{\; k}Y

\small \hat{L}^{2}\hat{L}_\pm^{\; k}Y=b\hat{L}_\pm^{\; k}Y\; \; \; \; \; k=0,1,2,\cdots\; \; \; \; \; \; \; \; 119

The raising and lowering operators also apply to the spin angular momentum \small \boldsymbol{\mathit{S}}, because the spin angular momentum component operators are postulated to obey the form of commutation relations as described by eq99, eq100 and eq101 (see eq165, eq166 and eq167). Similarly, the raising and lowering operators apply to the total angular momentum \small \boldsymbol{\mathit{J}} (see Q&A below).

 

Question

Show that \small \left [ \hat{J}_x,\hat{J}_y \right ]=i\hbar\hat{J}_z.

Answer

Let

\small \hat{J}_i=\hat{M}_{1i}+\hat{M}_{2i}\; \; \; \; \; \; \; \; 120

where \small i=x,y,z; \small \hat{M}_{1i} and \small \hat{M}_{2i} are component operators of \small \hat{M}^{(1)} and \small \hat{M}^{(2)} respectively.

\small \hat{M}^{(1)} and \small \hat{M}^{(2)} are operators of two sources of angular momentum, e.g. \small \hat{M}^{(1)} and \small \hat{M}^{(2)} are the orbital angular momentum operator and spin angular momentum operator respectively of a particle.

\small \left [ \hat{J}_x,\hat{J}_y \right ]=\left ( \hat{M}_{1x}+\hat{M}_{2x} \right )\left ( \hat{M}_{1y}+\hat{M}_{2y} \right )-\left ( \hat{M}_{1y}+\hat{M}_{2y} \right )\left ( \hat{M}_{1x}+\hat{M}_{2x} \right )

Expanding and rearranging the RHS of the above equation,

\small \left [ \hat{J}_x,\hat{J}_y \right ]=\left [ \hat{M}_{1x},\hat{M}_{1y} \right ]+\left [ \hat{M}_{2x},\hat{M}_{2y} \right ]+\left [ \hat{M}_{1x},\hat{M}_{2y} \right ]+\left [ \hat{M}_{2x},\hat{M}_{1y} \right ]

Since the 3rd term on RHS of the above equation involves operators acting on different vector spaces (e.g. spatial coordinates vs spin coordinates), they must commute. The same goes for the 4th term. So,

\small \left [ \hat{J}_x,\hat{J}_y \right ]=\left [ \hat{M}_{1x},\hat{M}_{1y} \right ]+\left [ \hat{M}_{2x},\hat{M}_{2y} \right ]

According to eq99 and eq165, \small \left [ \hat{M}_{1x},\hat{M}_{1y} \right ]=i\hbar\hat{M}_{1z} and \small \left [ \hat{M}_{2x},\hat{M}_{2y} \right ]=i\hbar\hat{M}_{2z}. So,

\small \left [ \hat{J}_{x},\hat{J}_{y} \right ]=i\hbar\hat{J}_{z}\; \; \; \; \; \; \; \; 121

Similarly, we have \small \left [ \hat{J}_{y},\hat{J}_{z} \right ]=i\hbar\hat{J}_{x} and \small \left [ \hat{J}_{z},\hat{J}_{x} \right ]=i\hbar\hat{J}_{y}.

 

 

Next article: eigenvalues of quantum orbital angular momentum operators
Previous article: commutation relations of quantum orbital angular momentum operators
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Leave a Reply

Your email address will not be published. Required fields are marked *