Non-relativistic multi-electron Hamiltonian

The three dimensional Hamiltonian operator \hat{H}_T for an n-electron atom (excluding spin-orbit and other interactions) is:

\hat{H}_T=\frac{1}{2m_e}\sum_{i=1}^{n}\hat{p}_i^{\;2}-\sum_{i=1}^{n}\frac{Ze^{2}}{4\pi\varepsilon_0r_i}+\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\frac{e^{2}}{4\pi\varepsilon_0r_{ij}}\; \; \; \; \; \; \; \; 239

where \hat{p}_i^{\;2}=\hat{p}_{ix}^{\;2}+\hat{p}_{iy}^{\;2}+\hat{p}_{iz}^{\;2}=\left ( \frac{\hbar}{i}\frac{\partial}{\partial x} \right )^{2}+\left ( \frac{\hbar}{i}\frac{\partial}{\partial y} \right )^{2}+\left ( \frac{\hbar}{i}\frac{\partial}{\partial z} \right )^{2}, r_i=\sqrt{x_i^{\;2}+y_i^{\;2}+z_i^{\;2}} and r_{ij}=\vert\boldsymbol{\mathit{r}}_i-\boldsymbol{\mathit{r}}_j\vert=\sqrt{(x_i-x_j)^{2}+(y_i-y_j)^{2}+(z_i-z_j)^{2}}

or

\hat{H}_T=-\frac{\hbar^{2}}{2m_e}\sum_{i=1}^{n}\nabla_i^{\;2}-\sum_{i=1}^{n}\frac{Ze^{2}}{4\pi\varepsilon_0r_i}+\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\frac{e^{2}}{4\pi\varepsilon_0r_{ij}}\; \; \; \; \; \; \; \; 240

where \nabla_i^{\;2}=\frac{\partial^{2}}{\partial x_i^{\;2}}+\frac{\partial^{2}}{\partial y_i^{\;2}}+\frac{\partial^{2}}{\partial z_i^{\;2}}.

It is the total energy operator of the atom. The first term consists of the kinetic energy operators of the atom’s electrons and acts on a function of r, \theta and \phi. The second term, which is the electrostatic potential energy for the attractions between the electrons and the protons, acts on a function of just r because we have assumed an infinitely heavy nucleus that is reduced to a point at the origin. The third term, which acts on a function of r, \theta and \phi, is the electrostatic potential energy of electron repulsions. To illustrate the double summation for the last term, we consider a four-electron system with electrons e1, e2, e3 and e4. The possible interacting potentials, in the form of ejek, are:

which can be represented by the double summation {\color{Red} \sum_{i=1}^{n-1}}{\color{Blue} \sum_{j=i+1}^{n}}. Note that this double summation can also be represented as \frac{1}{2}{\color{Blue} \sum_{j\neq i}}{\color{red} \sum_{i=1}^{n}}, which is illustrated as:

or {\color{Blue} \sum_{j> i}}{\color{red} \sum_{i=1}^{n}}, which is

To show that eq239 commutes with the components of the total orbital angular momentum operator \hat{\boldsymbol{\mathit{L}}}^{(T)}, we consider a two electron system. As we know, \hat{\boldsymbol{\mathit{L}}}^{(T)}=\hat{\boldsymbol{\mathit{L}}}_1+\hat{\boldsymbol{\mathit{L}}}_2, where \hat{\boldsymbol{\mathit{L}}}_1 and \hat{\boldsymbol{\mathit{L}}}_2 are the individual orbital angular momentum of the system. Using eq76, we have

\hat{\boldsymbol{\mathit{L}}}^{(T)}=\hat{\boldsymbol{\mathit{i}}}\hat{L}_{1x}+\hat{\boldsymbol{\mathit{j}}}\hat{L}_{1y}+\hat{\boldsymbol{\mathit{k}}}\hat{L}_{1z}+\hat{\boldsymbol{\mathit{i}}}\hat{L}_{2x}+\hat{\boldsymbol{\mathit{j}}}\hat{L}_{2y}+\hat{\boldsymbol{\mathit{k}}}\hat{L}_{2z}

\hat{\boldsymbol{\mathit{L}}}^{(T)}=\hat{\boldsymbol{\mathit{i}}}(\hat{L}_{1x}+\hat{L}_{2x}) +\hat{\boldsymbol{\mathit{j}}}(\hat{L}_{1y}+\hat{L}_{2y}) +\hat{\boldsymbol{\mathit{k}}}(\hat{L}_{1z}+\hat{L}_{2z})

where (\hat{L}_{1x}+\hat{L}_{2x}), (\hat{L}_{1y}+\hat{L}_{2y}) and (\hat{L}_{1z}+\hat{L}_{2z}) are components of \hat{\boldsymbol{\mathit{L}}}^{(T)}.

For the uncoupled case, where the orbital angular momenta of the two electrons do not interact, eq239 becomes \hat{H}_{T,uc}=\frac{1}{2m_e}\sum_{i=1}^{2}\hat{p}_i^{\;2}-\sum_{i=1}^{2}\frac{Ze^{2}}{4\pi\varepsilon_0r_i}. From eq103, eq104 and eq105, we have [\hat{L}_{mk},\frac{1}{r}]=0 and [\hat{L}_{mk},\hat{p}^{2}]=0, where m=1,2 and k=x,y,z. This implies that the components of \hat{\boldsymbol{\mathit{L}}}_1 and \hat{\boldsymbol{\mathit{L}}}_2 commutes with \hat{H}_{T,uc}, and that \left [ \hat{L}_k^{\;(T)}=\hat{L}_{1k}+\hat{L}_{2k},\frac{1}{r} \right ]=0 and \left [ \hat{L}_k^{\;(T)},\hat{p}^{2} \right ]=0, and hence \left [ \hat{L}_k^{\;(T)},\sum_{i=1}^{2}\frac{1}{r}_i \right ]=0 and \left [ \hat{L}_k^{\;(T)},\sum_{i=1}^{2}\hat{p}_i^{\;2} \right ]=0. Therefore, when we analyse the commutation relations of the components of \hat{\boldsymbol{\mathit{L}}}_1 and \hat{\boldsymbol{\mathit{L}}}_2 with \hat{H}_T, we are left with the commutation relations of the components of \hat{\boldsymbol{\mathit{L}}}_1 and \hat{\boldsymbol{\mathit{L}}}_2 with \frac{1}{\vert\boldsymbol{\mathit{r}}_1-\boldsymbol{\mathit{r}}_2\vert}.

 

Question

Show that the components of \hat{\boldsymbol{\mathit{L}}}^{(T)}, but not those of \hat{\boldsymbol{\mathit{L}}}_1 and \hat{\boldsymbol{\mathit{L}}}_2, commute with \frac{1}{\vert\boldsymbol{\mathit{r}}_1-\boldsymbol{\mathit{r}}_2\vert}.

Answer

Using eq74,

\left [ \hat{L}_{1z},\frac{1}{\vert\boldsymbol{\mathit{r}}_1-\boldsymbol{\mathit{r}}_2\vert} \right ]=\frac{\hbar}{i\vert\boldsymbol{\mathit{r}}_1-\boldsymbol{\mathit{r}}_2\vert^{3/2} }\left [ -x_1(y_1-y_2)+y_1(x_1-x_2) \right ]\neq0\; \; \; \; \; \; \; \; 241

\left [ \hat{L}_{2z},\frac{1}{\vert\boldsymbol{\mathit{r}}_1-\boldsymbol{\mathit{r}}_2\vert} \right ]=\frac{\hbar}{i\vert\boldsymbol{\mathit{r}}_1-\boldsymbol{\mathit{r}}_2\vert^{3/2} }\left [ x_2(y_1-y_2)-y_2(x_1-x_2) \right ]\neq0\; \; \; \; \; \; \; \; 242

Similarly,  the x,y-components of the uncoupled operators \hat{\boldsymbol{\mathit{L}}}_1 and \hat{\boldsymbol{\mathit{L}}}_2 do not commute with with \frac{1}{\vert\boldsymbol{\mathit{r}}_1-\boldsymbol{\mathit{r}}_2\vert}. Therefore, all components of \hat{\boldsymbol{\mathit{L}}}_1 and \hat{\boldsymbol{\mathit{L}}}_2 do not commute with the Hamiltonian \hat{H}_T.

Using the identity [\hat{A}+\hat{B},\hat{C}]=[\hat{A},\hat{C}]+[\hat{B},\hat{C}] and substituting eq241 and eq242 into \left [ \hat{L}_{1z}+\hat{L}_{2z},\frac{1}{\vert\boldsymbol{\mathit{r}}_1-\boldsymbol{\mathit{r}}_2\vert} \right ], we have \left [ \hat{L}_{1z}+\hat{L}_{2z},\frac{1}{\vert\boldsymbol{\mathit{r}}_1-\boldsymbol{\mathit{r}}_2\vert} \right ]=0. Similarly, we find that \left [ \hat{L}_{1x}+\hat{L}_{2x},\frac{1}{\vert\boldsymbol{\mathit{r}}_1-\boldsymbol{\mathit{r}}_2\vert} \right ]=0 and \left [ \hat{L}_{1y}+\hat{L}_{2y},\frac{1}{\vert\boldsymbol{\mathit{r}}_1-\boldsymbol{\mathit{r}}_2\vert} \right ]=0. So,

\left [ \hat{L}_x^{\;(T)},\hat{H}_T \right ]=\left [ \hat{L}_y^{\;(T)},\hat{H}_T \right ]=\left [ \hat{L}_z^{\;(T)},\hat{H}_T \right ]=0 \; \; \; \; \; \; \; \; 243

 

Therefore, the components of the coupled total orbital angular momentum operator commutes with the Hamiltonian \hat{H}_T. If so, we can evaluate \left [ \hat{{L}^{2}}^{(T)},\hat{H}_T \right ] using the identities [\hat{A}+\hat{B}+\hat{C},\hat{D}]=[\hat{A},\hat{D}]+[\hat{B},\hat{D}]+[\hat{C},\hat{D}] and [\hat{A}\hat{B},\hat{C}]=[\hat{A},\hat{C}]\hat{B}+\hat{A}[\hat{B},\hat{C}] and eq243, which gives us

\left [ \hat{{L}^{2}}^{(T)},\hat{H}_T \right ]=0\; \; \; \; \; \; \; \; 244

Finally, \hat{H}_T also commutes with \hat{{S}^{2}}^{(T)} and \hat{S}_z^{\;(T)} because \hat{H}_T and spin angular momentum operators act on different vector spaces.

 

Question

Show that \hat{\boldsymbol{\mathit{L}}}^{(T)}\cdot\hat{\boldsymbol{\mathit{S}}}^{(T)} commutes with \hat{H}_T, where \hat{\boldsymbol{\mathit{L}}}^{(T)}=\sum_{i=1}^{n}\hat{\boldsymbol{\mathit{L}}}_i and .\hat{\boldsymbol{\mathit{S}}}^{(T)}=\sum_{i=1}^{n}\hat{\boldsymbol{\mathit{S}}}_i.

Answer

\left [ \hat{\boldsymbol{\mathit{L}}}^{T}\cdot\hat{\boldsymbol{\mathit{S}}}^{T},\hat{H}_T\right ]=\left [\hat{L_x^{\;(T)}}\hat{S_x^{\;(T)}}+\hat{L_y^{\;(T)}}\hat{S_y^{\;(T)}}+\hat{L_z^{\;(T)}}\hat{S_z^{\;(T)}},\hat{H}_T \right ]

Using the identities [\hat{A}+\hat{B}+\hat{C},\hat{D}]=[\hat{A},\hat{D}]+[\hat{B},\hat{D}]+[\hat{C},\hat{D}] and [\hat{A}\hat{B},\hat{C}]=[\hat{A},\hat{C}]\hat{B}+\hat{A}[\hat{B},\hat{C}], and noting that every component of \hat{\boldsymbol{\mathit{L}}} commutes with every component of \hat{\boldsymbol{\mathit{S}}} because they act on different vector spaces, and that the components of \hat{\boldsymbol{\mathit{S}}} commutes with \hat{H}_T because they act on different vector spaces, we have

\left [ \hat{\boldsymbol{\mathit{L}}}^{T}\cdot\hat{\boldsymbol{\mathit{S}}}^{T},\hat{H}_T\right ]=0\; \; \; \; \; \; \; \; 245

 

 

Next article: Exchange force
Previous article: Pauli exclusion principle
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Leave a Reply

Your email address will not be published. Required fields are marked *