Dirac bra-ket notation

The Dirac bra-ket notation is a concise way to represent objects in a complex vector space \mathbb{C}^{n}.

A ket, denoted by \vert \textbf{\textit{v}} \rangle, is a vector \textbf{\textit{v}}. Since a linear operator \hat{O} maps a vector to another vector, we have \hat{O}\vert \boldsymbol{\mathit{v_{1}}}\rangle=\vert \boldsymbol{\mathit{v_{2}}} \rangle.

A bra, denoted by \langle\boldsymbol{\mathit{u}}\vert , is often associated with a ket in the form of an inner product, denoted by \langle\boldsymbol{\mathit{u}}\vert\boldsymbol{\mathit{v}}\rangle. If a ket is expressed as a column vector, the corresponding bra is the conjugate transpose of its ket, i.e. \langle\boldsymbol{\mathit{u}}\vert=\vert\boldsymbol{\mathit{u}}\rangle^{\dagger}. The inner product can therefore be written as the following matrix multiplication:

or in the case of functions:

\langle\boldsymbol{\mathit{u}}\vert\boldsymbol{\mathit{v}}\rangle=\int_{-\infty}^{\infty}f_{u}^{*}(x)f_{v}(x)dx

Since a linear operator acting on a ket is another ket, we can express an inner product as:

\langle\phi_{i}\vert\phi_{k}\rangle=\langle\phi_{i}\vert\hat{O}\vert\phi_{j}\rangle=\int \phi_{i}^{*}\hat{O}\phi_{j}d\tau

where \hat{O}\vert\phi_{j}\rangle=\vert\phi_{k}\rangle.

If i=j, then \langle\phi\vert\hat{O}\vert\phi\rangle is the expectation value (or average value) of the operator \hat{O}.

As mentioned above, bras and kets can be represented by matrices. Therefore, the multiplication of a bra and a ket that involves a linear operator is associative, e.g.:

\langle\boldsymbol{\mathit{u}}\vert(\hat{O}\vert\boldsymbol{\mathit{v}}\rangle)=(\langle\boldsymbol{\mathit{u}}\vert\hat{O})\vert\boldsymbol{\mathit{v}}\rangle\equiv\langle\boldsymbol{\mathit{u}}\vert\hat{O}\vert\boldsymbol{\mathit{v}}\rangle

(\vert\boldsymbol{\mathit{u}}\rangle\langle\boldsymbol{\mathit{v}}\vert)\vert\boldsymbol{\mathit{w}}\rangle=\vert\boldsymbol{\mathit{u}}\rangle(\langle\boldsymbol{\mathit{v}}\vert\boldsymbol{\mathit{w}}\rangle)

(\hat{O}\vert\boldsymbol{\mathit{u}}\rangle)\langle\boldsymbol{\mathit{v}}\vert=\hat{O}(\vert\boldsymbol{\mathit{u}}\rangle\langle\boldsymbol{\mathit{v}}\vert)\equiv\hat{O}\vert\boldsymbol{\mathit{u}}\rangle\langle\boldsymbol{\mathit{v}}\vert

You can verify the above examples using a 2×2 matrix with complex elements to represent the operator acting on a vector in \mathbb{C}^{2}. The three examples reveal that:

    1. \hat{O}\vert\boldsymbol{\mathit{v}}\rangle produces another ket.
    2. \langle\boldsymbol{\mathit{u}}\vert\hat{O} results in another bra. This is because (\langle\boldsymbol{\mathit{u}}\vert\hat{O})\vert\boldsymbol{\mathit{v}}\rangle=\langle\boldsymbol{\mathit{u}}\vert(\hat{O}\vert\boldsymbol{\mathit{v}}\rangle)=\langle\boldsymbol{\mathit{u}}\vert\boldsymbol{\mathit{v'}}\rangle=c, where c is a scalar; and if (\langle\boldsymbol{\mathit{u}}\vert\hat{O})\vert\boldsymbol{\mathit{v}}\rangle=c, the only possible identity of (\langle\boldsymbol{\mathit{u}}\vert\hat{O}) is a bra.
    3. \vert\boldsymbol{\mathit{u}}\rangle\langle\boldsymbol{\mathit{v}}\vert , which is called an outer product, is an operator because (\vert\boldsymbol{\mathit{u}}\rangle\langle\boldsymbol{\mathit{v}}\vert)\vert\boldsymbol{\mathit{w}}\rangle=\vert\boldsymbol{\mathit{u}}\rangle(\langle\boldsymbol{\mathit{v}}\vert\boldsymbol{\mathit{w}}\rangle)=c\vert\boldsymbol{\mathit{u}}\rangle, i.e. \vert\boldsymbol{\mathit{u}}\rangle\langle\boldsymbol{\mathit{v}}\vert maps the ket \vert\boldsymbol{\mathit{w}}\rangle to another ket c\vert\boldsymbol{\mathit{u}}\rangle. In other words, the operator \vert\boldsymbol{\mathit{u}}\rangle\langle\boldsymbol{\mathit{v}}\vert transforms the vector \vert\boldsymbol{\mathit{w}}\rangle in the direction of the vector \vert\boldsymbol{\mathit{u}}\rangle, i.e. \vert\boldsymbol{\mathit{u}}\rangle\langle\boldsymbol{\mathit{v}}\vert projects \vert\boldsymbol{\mathit{w}}\rangle onto \vert\boldsymbol{\mathit{u}}\rangle.
    4. The product of two linear operators is another linear operator: \hat{O}\hat{O'}=\hat{O}(\vert\boldsymbol{\mathit{u}}\rangle\langle\boldsymbol{\mathit{v}}\vert)=(\hat{O}\vert\boldsymbol{\mathit{u}}\rangle)\langle\boldsymbol{\mathit{v}}\vert=\vert\boldsymbol{\mathit{u'}}\rangle\langle\boldsymbol{\mathit{v}}\vert=\hat{O''}.

Next article: vector space
Previous article: stationary state
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Leave a Reply

Your email address will not be published. Required fields are marked *