Relativistic many-electron Hamiltonian

The multi-electron Hamiltonian including the relativistic spin-orbit coupling term (but excluding other relativistic corrections) is

\hat{H}_R=\hat{H}_T+\hat{H}_{so}\; \; \; \; \; \; \; \; 283

where \hat{H}_T and \hat{H}_{so} are given by eq240 and eq261a, respectively.We shall now show that \hat{J}_z and \hat{J}^2 commute with \sum_{i=1}^n\boldsymbol{\mathit{S}}_i\cdot\boldsymbol{\mathit{L}}_i and therefore with \hat{H}_R. Assuming n=2,

\left[\hat{J}_z,\sum_{i=1}^2\boldsymbol{\mathit{S}}_i\cdot\boldsymbol{\mathit{L}}_i\right]=\left [\hat{L}_z^T+\hat{S}_z^T ,\sum_{i=1}^2\boldsymbol{\mathit{S}}_i\cdot\boldsymbol{\mathit{L}}_i\right ]=\left [\hat{L}_{1z}+\hat{L}_{2z}+\hat{S}_{1z}+\hat{S}_{2z} ,\sum_{i=1}^2\boldsymbol{\mathit{S}}_i\cdot\boldsymbol{\mathit{L}}_i\right ]

Expanding the RHS of the second equality of the above equation and using eq99, eq100, eq101, eq165, eq166 and eq167, \left[\hat{J}_z,\sum_{i=1}^2\boldsymbol{\mathit{S}}_i\cdot\boldsymbol{\mathit{L}}_i\right]=0. In general,

\left[\hat{J}_z,\sum_{i=1}^n\boldsymbol{\mathit{S}}_i\cdot\boldsymbol{\mathit{L}}_i\right]=0\; \; \; \; \; \; \; \; 284

Similarly,

\left[\hat{J}_x,\sum_{i=1}^n\boldsymbol{\mathit{S}}_i\cdot\boldsymbol{\mathit{L}}_i\right]=0\; \; \; \; \; and\; \; \; \; \;\left[\hat{J}_y,\sum_{i=1}^n\boldsymbol{\mathit{S}}_i\cdot\boldsymbol{\mathit{L}}_i\right]=0\; \; \; \; \; \; \; \; 285

Furthermore, [\hat{J}_z,\hat{H}_T]=[\hat{L}_z^T,\hat{H}_T]+[\hat{S}_z^T,\hat{H}_T]. Using eq243, [\hat{J}_z,\hat{H}_T]=0. Combining this with eq284,

\left[\hat{J}_z,\hat{H}_R\right]=0\; \; \; \; \; \; \; \; 286

Next,

\left[\hat{J}^2,\sum_{i=1}^2\boldsymbol{\mathit{S}}_i\cdot\boldsymbol{\mathit{L}}_i\right]=\left[\hat{J}_x^2,\sum_{i=1}^2\boldsymbol{\mathit{S}}_i\cdot\boldsymbol{\mathit{L}}_i\right]+\left[\hat{J}_y^2,\sum_{i=1}^2\boldsymbol{\mathit{S}}_i\cdot\boldsymbol{\mathit{L}}_i\right]+\left[\hat{J}_z^2,\sum_{i=1}^2\boldsymbol{\mathit{S}}_i\cdot\boldsymbol{\mathit{L}}_i\right]

Using the identity [\hat{A}\hat{B},\hat{C}]=[\hat{A},\hat{C}]\hat{B}+\hat{A}[\hat{B},\hat{C}] and substituting eq284 and eq285 in the above equation, \left[\hat{J}^2,\sum_{i=1}^2\boldsymbol{\mathit{S}}_i\cdot\boldsymbol{\mathit{L}}_i\right]=0. In general,

\left[\hat{J}^2,\sum_{i=1}^n\boldsymbol{\mathit{S}}_i\cdot\boldsymbol{\mathit{L}}_i\right]=0\; \; \; \; \; \; \; \; 287

Using eq244, eq245, \left[\hat{J}^2,\hat{H}_T\right]=\left[\hat{{L}^2}^T+\hat{{S}^2}^T+2\hat{\boldsymbol{\mathit{S}}}^T\cdot\hat{\boldsymbol{\mathit{L}}}^T,\hat{H}_T\right]=0. So,

\left[\hat{J}^2,\hat{H}_R\right]=0\; \; \; \; \; \; \; \; 288

Therefore, \hat{J}^2 and \hat{J}_z commute with \hat{H}_R. We have also shown in an earlier article that \hat{P}_{ij} commutes with \hat{J}^2, \hat{J}_z and \hat{H}_R. This implies that we can select a common complete set of eigenfunctions for \hat{J}^2, \hat{J}_z, \hat{P}_{ij} and \hat{H}_R. . Unlike the case of the hydrogen atom, \hat{{L}^2}^T and \hat{{S}^2}^T no longer commute with \hat{H}_{so} for a multi-electron atom (see eq182 and eq182a). Despite that, the quantum numbers J, L and S are used to characterise the states of elements in the first three periods of the periodic table, because spin-orbit coupling is weak for these atoms.

Similar to hydrogen, the eigenvalue equation of \hat{H}\psi=E\psi for a multi-electron atom is solved by treating \hat{H}_{so} as a perturbation if spin-orbit coupling is weak, with the unperturbed part of the eigenvalue equation solved using the Hartree-Fock method.

 

Question

Evaluate E_{so} using the first order perturbation theory.

Answer

For a multi-electron system, \hat{J}^2=\hat{L}^2+\hat{S}^2+2\hat{\boldsymbol{\mathit{L}}}\cdot\hat{\boldsymbol{\mathit{S}}}. So, \hat{\boldsymbol{\mathit{L}}}\cdot\hat{\boldsymbol{\mathit{S}}}=\frac{1}{2}\left ( \hat{J}^2-\hat{L}^2-\hat{S}^2\right ), which when substituted in E_{so}=\langle\psi\vert\xi(r)\hat{\boldsymbol{\mathit{L}}}\cdot\hat{\boldsymbol{\mathit{S}}}\vert\psi\rangle and using eq133, eq160 and eq205a, gives

E_{so}=A\frac{\hbar^2}{2}[J(J+1)-L(L+1)-S(S+1)]\; \; \; \; \; \; \; \; 289

where A=\langle\psi\vert\xi(r)\vert\psi\rangle=\biggl\langle\psi\left | \sum_{i=1}^n\frac{1}{2m_e^{\;2}c^2r_i}\frac{dV_i}{dr_i}\right |\psi\biggr\rangle.

A is evaluated empirically to be a constant for a given term.

 

 

Next article: Russell Saunders coupling
Previous article: relativistic one-electron Hamiltonian
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Leave a Reply

Your email address will not be published. Required fields are marked *