Larmor precession of an electron

Larmor precession is the change in orientation of the axis of the magnetic moment \small \boldsymbol{\mathit{\mu}} of a particle with respect to the axis of an external magnetic field. Consider an electron at rest with intrinsic spin of \small \boldsymbol{\mathit{s}} in a \small z-directional uniform magnetic field \small \boldsymbol{\mathit{B}}. The magnetic field interacts with the electron’s magnetic moment and generates a torque \small \boldsymbol{\mathit{\tau}}=\boldsymbol{\mathit{\mu}}\times\boldsymbol{\mathit{B}} (see diagram below).

If \small \boldsymbol{\mathit{\mu}} is the spin magnetic moment of an electron, eq61 becomes \small \boldsymbol{\mathit{\mu}}=\gamma_e\boldsymbol{\mathit{s}}, where \small \gamma_e is the gyromagnetic ratio of the electron. Taking the derivative on both sides of this equation with respect to \small t,

\small \frac{d\boldsymbol{\mathit{\mu}}}{dt}=\gamma_e\frac{d\boldsymbol{\mathit{s}}}{dt}

From eq64 and eq71, we have \small \frac{d\boldsymbol{\mathit{L}}}{dt}=\boldsymbol{\mathit{\mu}}\times \boldsymbol{\mathit{B}}, whose spin analogue is \small \frac{d\boldsymbol{\mathit{s}}}{dt}=\boldsymbol{\mathit{\mu}}\times \boldsymbol{\mathit{B}}. So,

\small \frac{d\boldsymbol{\mathit{\mu}}}{dt}=\gamma_e\, \boldsymbol{\mathit{\mu}}\times \boldsymbol{\mathit{B}}

With reference to the above diagram, the change in arc length with respect to \small t is \small \frac{d\mu}{dt}=\mu sin\theta\frac{d\phi}{dt}. Hence,

\small \gamma_e\mu Bsin\theta=\mu sin\theta\frac{d\phi}{dt}

\small \int_{0}^{2\pi}d\phi=\gamma_eB\int_{0}^{T}dt

\small \omega_L=\vert\gamma_e B\vert=\frac{eB}{m_e}\; \; \; \; \; \; \; \; 149

where \small T is the period, \small m_e is the mass of an electron and \small \omega_L=\frac{2\pi}{T} is the Larmor frequency, which is defined as a positive value.

Note that the Larmor frequency is sometimes defined as \small v_L=\frac{1}{T}, which is then \small v_L=\frac{\vert\gamma_e B\vert}{2\pi}.

 

 

Next article: Biot-Savart law
Previous article: the vector model of quantum angular momentum
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

The vector model of quantum angular momentum

The vector model of angular momentum is a diagrammatic representation of the implications of the commutation relation of \small \hat{L}^{2} with any one of the 3 component angular momentum operators.

In a previous article, we showed that it is possible to simultaneously specify eigenvalues of \small \hat{L}^{2} and \small \hat{L}_z because the 2 operators commute. Diagram I depicts the eigenvalues of \small \hat{L} (i.e. the square root of eigenvalues of \small \hat{L}^{2}) and \small \hat{L}_z.

where axes are in \small \hbar units; \small \boldsymbol{\mathit{L}} is the angular momentum vector with magnitude \small \sqrt{l(l+1)}, and has a \small z-component of magnitude \small m_l\in \mathbb{Z}.

Since any one of the component angular momenta does not commute with any of the other two, we cannot simultaneously specify more than one component of angular momentum (other than the trivial case of \small l_x=l_y=l_z=0). The angular momentum vector therefore lies on the cones in diagram II at any azimuthal angle.

 

Question

Can \small \boldsymbol{\mathit{L}} lie on the \small z-axis?

Answer

No. If \small \boldsymbol{\mathit{L}} lies on the \small z-axis, \small l_z is some non-zero integer while \small l_x=l_y=0. This means we have specified all 3 angular momentum components, which is impossible.

 

Next article: LArmor precession of an electron
Previous article: matrix elements of angular momentum ladder operators
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Matrix elements of angular momentum ladder operators

The matrix elements of angular momentum ladder operators play a crucial role in quantum mechanics, facilitating transitions between different angular momentum states and providing insight into the underlying symmetry of quantum systems.

From eq132 of the previous article, we have

\small \hat{L}_z\vert l,m_l+1\rangle=(m_l+1)\hbar\vert l,m_l+1\rangle\; \; \; \; \; \; \; \; 134

From eq113 where k=1 and eq130, we have

\small \hat{L}_z\hat{L}_+\vert l,m_l\rangle=(m_l+1)\hbar\hat{L}_+\vert l,m_l\rangle\; \; \; \; \; \; \; \; 135

Comparing eq134 and eq135, both eigenstates \small \vert l,m_l+1\rangle and \small \hat{L}_+\vert l,m_l\rangle are associated with the same eigenvalue \small (m_l+1)\hbar. Therefore, one must be proportional to the other (e.g. the eigenstates \small e^{-ikx} and \small Ae^{-ikx} have the same eigenvalue), i.e.

\small \hat{L}_+\vert l,m_l\rangle=c_+\vert l,m_l+1\rangle\; \; \; \; \; \; \; \; 136

Similarly, for the lowering operator (using eq114), we have,

\small \hat{L}_-\vert l,m_l\rangle=c_-\vert l,m_l-1\rangle\; \; \; \; \; \; \; \; 137

where \small c_+ and \small c_- are scalars; or in summary

\small \hat{L}_\pm\vert l,m_l\rangle=c_\pm\vert l,m_l\pm 1\rangle\; \; \; \; \; \; \; \; 138

If the complete set of eigenstates is normalised, multiplying the above equation on the left by \small \langle l,m_l\pm1\vert gives the matrix elements of \small \hat{L}_\pm:

\small \langle l,m_l\pm 1\vert\hat{L}_\pm\vert l,m_l\rangle=c_\pm\; \; \; \; \; \; \; \; 139

From eq116, we have \small \hat{L}_-\hat{L}_+\vert l,m_l\rangle=(\hat{L}^{2}-\hat{L}_z^{\; 2}-\hbar\hat{L}_z)\vert l,m_l\rangle. Using eq132 and eq133,

\small \hat{L}_-\hat{L}_+\vert l,m_l\rangle=[l(l+1)-m_l(m_l+1)]\hbar^{2}\vert l,m_l\rangle\; \; \; \; \; \; \; \; 140

From eq136 and eq137

\small \hat{L}_-\hat{L}_+\vert l,m_l\rangle=c_+\hat{L}_-\vert l,m_l+1\rangle=c_+c_-\vert l,m_l\rangle\; \; \; \; \; \; \; \; 141

Comparing eq140 and eq141

\small c_+c_-=[l(l+1)-m_l(m_l+1)]\hbar^{2}\; \; \; \; \; \; \; \; 142

 

Question

Show that \small c_+c_-=\vert c_+\vert^{2}.

Answer

From eq139, where we let \small m_l=m_l+1

\small \langle l,m_l\vert\hat{L}_-\vert l,m_l+1\rangle=c_-

Substituting eq109 in the above equation

\small \langle l,m_l\vert\hat{L}_x\vert l,m_l+1\rangle-i\langle l,m_l\vert\hat{L}_y\vert l,m_l+1\rangle=c_-

Since \small \hat{L}_x and \small \hat{L}_y are Hermitian,

\small \left \{ \langle l,m_l+1\vert\hat{L}_x\vert l,m_l\rangle+i\langle l,m_l+1\vert\hat{L}_y\vert l,m_l\rangle\right \}^{*}=c_-

Substituting eq108 in the above equation

\small \langle l,m_l+1\vert\hat{L}_+\vert l,m_l\rangle^{*}=c_-

Substituting eq139 in the above equation

\small c_+^{\; *}=c_-\; \; \; \; \; \; \; \; 143

Therefore, \small c_+c_-=\vert c_+\vert^{2}.

 

Substituting \small c_+c_-=\vert c_+\vert^{2} in eq142

\small c_+=\hbar \sqrt{l(l+1)-m_l(m_l+1)}

Substituting the above equation in eq136,

\small \hat{L}_+\vert l,m_l\rangle=\hbar \sqrt{l(l+1)-m_l(m_l+1)}\; \vert l,m_l+1\rangle \; \; \; \; \; \; \; \; 144

To find \small c_-, we repeat the above steps for eq139 onwards and using eq115 to give

\small \hat{L}_+\hat{L}_-\vert l,m_l\rangle=\left ( \hat{L}^{2}-\hat{L}_z^{\; 2} +\hbar\hat{L}_z\right )\vert l,m_l\rangle=[l(l+1)-m_l(m_l-1)]\hbar^{2}\vert l,m_l\rangle\; \; \; \; \; \; \; \; 145

From eq137,

\small \hat{L}_+\hat{L}_-\vert l,m_l\rangle=c_-\hat{L}_+\vert l,m_l-1\rangle=c_-c_+\vert l,m_l\rangle\; \; \; \; \; \; \; \; 146

Comparing eq145 and eq146,

\small c_-c_+=[l(l+1)-m_l(m_l-1)]\hbar^{2}

Substituting eq143, where \small c_+=c_-^{\; *}, in the above equation

\small c_-=\hbar\sqrt{l(l+1)-m_l(m_l-1)}

Substituting the above equation in eq137,

\small \hat{L}_-\vert l,m_l\rangle=\hbar\sqrt{l(l+1)-m_l(m_l-1)}\vert l,m_l-1\rangle\; \; \; \; \; \; \; \; 147

Combining eq144 and eq147

\small \hat{L}_\pm\vert l,m_l\rangle=\hbar\sqrt{l(l+1)-m_l(m_l\pm1)}\vert l,m_l\pm1\rangle\; \; \; \; \; \; \; \; 148

 

Next article: the vector model of quantum angular momentum
Previous article: eigenvalues of quantum orbital angular momentum operators
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Eigenvalues of quantum orbital angular momentum operators

The eigenvalues of quantum orbital angular momentum operators are fundamental to understanding the quantisation of angular momentum in quantum mechanics, as they dictate the allowed energy levels and spatial distributions of particles in atomic and molecular systems.

As mentioned in an earlier article, if \small \left [ \hat{L}^{2},\hat{L}_z \right ]=0, a common complete set of eigenfunctions can be selected for the two operators. Let \small Y be the common set of normalised eigenfunctions with eigenvalues \small b and \small c for \small \hat{L}^{2} and \small \hat{L}_z respectively.

From eq75,

\small \hat{L}^{2}-\hat{L}_z^{\; 2} =\hat{L}_x^{\; 2}+\hat{L}_y^{\; 2}

Multiplying the above equation by \small Y on the right, \small Y^{*} on the left and integrating over all space, we have

\small \langle L^{2}\rangle-\langle L_z^{\; 2}\rangle=\langle L_x^{\; 2}\rangle+\langle L_y^{\; 2}\rangle

\small b-c^{2}=\langle L_x^{\; 2}\rangle+\langle L_y^{\; 2}\rangle

Even though \small Y is not an eigenfunction of \small \hat{L}_x^{\; 2}, we can still find the expectation value of \small \hat{L}_x^{\; 2}, which is

\small \langle L_x^{\; 2}\rangle=\int Y^{*}\hat{L}_x(\hat{L}_xY)d\tau=\int (\hat{L}_xY)(\hat{L}_xY)^{*}d\tau=\int \vert \hat{L}_xY\vert^{2}d\tau\geq 0

Note that we have used the fact that \small \hat{L}_x is Hermitian for the 2nd equality (see eq37). Similarly, \small \langle L_y^{\; 2}\rangle\geq 0. So,

\small b-c^{2}\geq 0\; \; \; \; \; or\; \; \; \; \; -\sqrt{b}\leq c\leq \sqrt{b}

Therefore, \small c has an upper bound and a lower bound. Since the eigenvalues of \small \hat{L}_z has an upper bound and a lower bound, from eq113 and eq114 we have

\small \hat{L}_zY_{max}=c_{max}Y_{max}\; \; \; \; \; \; \; \; 122

\small \hat{L}_zY_{min}=c_{min}Y_{min}\; \; \; \; \; \; \; \; 123

where \small Y_{max}=\hat{L}_+^{\; k_{max}}Y, \small c_{max}=c+k_{max}\hbar, \small Y_{min}=\hat{L}_-^{\; k_{min}}Y and \small c_{min}=c-k_{min}\hbar.

If we operate on eq122 with \small \hat{L}_+, we supposedly have

\small \hat{L}_z(\hat{L}_+Y_{max})=(c_{max}+\hbar)(\hat{L}_+Y_{max})

However, the above equation contradicts the upper bound eigenvalue of \small \hat{L}_z of \small c_{max}. This implies that we must truncate the ladder beyond eq122. Since \small c_{max}+\hbar\neq 0, we must have

\small \hat{L}_+Y_{max}=0\; \; \; \; \; \; \; \; 124

Using the same argument when operating on eq123 with \small \hat{L}_-, we have

\small \hat{L}_-Y_{min}=0 \; \; \; \; \; \; \; \; 125

If we further operate on eq124 with \small \hat{L}_-, we have

\small \hat{L}_-\hat{L}_+Y_{max}=0

Substitute eq116 in the above equation,

\small (\hat{L}^{2}-\hat{L}_z^{\; 2}-\hbar\hat{L}_z)Y_{max}=0

Using eq119 where \small k=k_{max}, and eq122,

\small (b-c_{max}^{\; \; \; \; \; \; 2}-\hbar c_{max})Y_{max}=0

Since \small Y_{max}\neq 0

\small b-c_{max}^{\; \; \; \; \; \; 2}-\hbar c_{max}=0 \; \; \; \; \; \; \; \; 126

Similarly, operating on eq125 with \small \hat{L}_+ and using eq115, eq119 and eq123, we have

\small b-c_{min}^{\; \; \; \; \; \; 2}+\hbar c_{min}=0 \; \; \; \; \; \; \; \; 127

Subtracting eq127 from eq126, we have \small (c_{max}+c_{min})(c_{min}-c_{max}-\hbar)=0. Since \small c_{max}> c_{min} and \small (c_{min}-c_{max}-\hbar)< 0, we have \small c_{max}+c_{min}=0 or

\small c_{max}=-c_{min}\; \; \; \; \; \; \; \; 128

As we know from eq122 and eq123, the value of \small c_{max}-c_{min} of a particular system is dependent on the number of consecutive operations on \small \hat{L}_zY by \small \hat{L}_+ or \small \hat{L}_-, with each operation raising or lowering the eigenvalue of \small \hat{L}_z by \small \hbar. Therefore,

\small c_{max}-c_{min}=0,\hbar,2\hbar,\cdots=2l\hbar\; \; \; \; \; \; \; \; 129

where \small l=0,\frac{1}{2},1,\frac{3}{2},\cdots

Substituting eq128 in eq129, we have \small c_{max}=l\hbar and \small c_{min}=-l\hbar. Therefore, the eigenvalues of \small \hat{L}_z are

\small c=-l\hbar,-l\hbar+\hbar,-l\hbar+2\hbar,\cdots,l\hbar=-l\hbar,(-l+1)\hbar,(-l+2)\hbar,\cdots,l\hbar

\small c=m_l\hbar\; \; \; \; \; \; \; \; 130

where \small m_l=-l,-l+1,-l+2,\cdots,l.

Substituting \small c_{min}=-l\hbar in eq127,

\small b=l(l+1)\hbar^{2}\; \; \; \; \; \; \; \; 131

where \small l=0,\frac{1}{2},1,\frac{3}{2},\cdots.

As mentioned in the previous article, the raising and lowering operators also apply to the spin angular momentum \small \boldsymbol{\mathit{S}} and the total angular momentum \small \boldsymbol{\mathit{J}}. We would therefore expect the eigenvalues of \small \hat{S}^{2} and \small \hat{S}_z to be \small s(s+1)\hbar^{2} and \small m_s\hbar respectively, and the eigenvalues of \small \hat{J}^{2} and \small \hat{J}_z to be \small j(j+1)\hbar^{2} and \small m_j\hbar respectively. However, the quantum numbers \small l and \small m_l for the orbital angular momentum \small \boldsymbol{\mathit{L}}, but not the quantum numbers for \small \boldsymbol{\mathit{S}} and \small \boldsymbol{\mathit{J}}, are restricted to integers. Therefore,

 

\small \boldsymbol{\mathit{L}} \small m_l\in \mathbb{Z} \small l\in \mathbb{Z}
\small \boldsymbol{\mathit{S}} \small m_s=-s,-s+1,-s+2,\cdots,s \small s=0,\frac{1}{2},1,\frac{3}{2},\cdots
\small \boldsymbol{\mathit{J}} \small m_j=-j,-j+1,-j+2,\cdots,j \small j=0,\frac{1}{2},1,\frac{3}{2},\cdots

 

Question

Why are the quantum numbers for \small \boldsymbol{\mathit{L}} restricted to integers?

Answer

The eigenvalue equation for \small \hat{L}_z (see eq95) is:

\small \frac{\hbar}{i}\frac{\partial}{\partial\phi}\psi=m_l\hbar\psi

where \small \psi=Ae^{im_l\phi}.

Since \small \psi must be single-valued,

\small Ae^{im_l\phi}=Ae^{im_l(\phi+2\pi)}

\small e^{im_l2\pi}=1

\small cosm_l2\pi + isinm_l2\pi=1

The solution to the above equation is \small m_l\in \mathbb{Z}. Furthermore, \small l is also an integer because \small m_l=-l,-l+1,-l+2,\cdots,l. In other words, there are values of for a given value of .

 

We would arrive at the same results (eq130 and eq131) if we have chosen \small \hat{L}_x or \small \hat{L}_y instead of \small \hat{L}_z. The significance of eq130 and eq131 is that we can simultaneously assign eigenvalues of \small \hat{L}^{2} and \small \hat{L}_z (or \small \hat{L}^{2} and \small \hat{L}_x or \small \hat{L}^{2} and \small \hat{L}_y) if the 2 operators commute. This, together with the fact that any pair of component angular momentum operators does not commute, implies that we cannot simultaneously specify eigenvalues of \small \hat{L}^{2} and more than one component angular momentum operators.

In conclusion, substituting eq130 in eq112 and eq131 in eq117

\small \hat{L}_zY=m_l\hbar Y

\small \hat{L}^{2}Y=l(l+1)\hbar^{2} Y\;\;\;\;\;\;\;\;131a

Since \small Y is a function of \small l and \small m_l, we can express the above eigenvalue equations as:

\small \hat{L}_z\vert l,m_l\rangle=m_l\hbar \vert l,m_l\rangle \; \; \; \; \; \; \; \; 132

\small \hat{L}^{2}\vert l,m_l\rangle=l(l+1)\hbar^{2} \vert l,m_l\rangle \; \; \; \; \; \; \; \; 133

 

Next article: matrix elements of angular momentum operators
Previous article: quantum orbital angular momentum ladder operators
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Quantum orbital angular momentum ladder operators

The ladder operators of quantum orbital angular momentum are defined as:

\small \hat{L}_+=\hat{L}_x+i\hat{L}_y\; \; \; \; \; \; \; \; 108

\small \hat{L}_-=\hat{L}_x-i\hat{L}_y\; \; \; \; \; \; \; \; 109

where \small \hat{L}_+ is the raising operator and \small \hat{L}_- is the lowering operator.

To demonstrate why the operators are named as such, we substitute eq108 in \small \left [\hat{L}_+,\hat{L}_z\right ]:

\small \left [\hat{L}_+,\hat{L}_z\right ]=\left [\hat{L}_x+i\hat{L}_y,\hat{L}_z\right ]=\left [\hat{L}_x,\hat{L}_z\right ]+i\left [\hat{L}_y,\hat{L}_z\right ]

Substituting eq100 and eq101 in the above equation, and noting that \small \left [ \hat{L}_a,\hat{L}_b \right ]=-\left [ \hat{L}_b,\hat{L}_a \right ], yields

\small \hat{L}_+\hat{L}_z-\hat{L}_z\hat{L}_+=-i\hbar\hat{L}_y-\hbar\hat{L}_x

\small \hat{L}_+\hat{L}_z=\hat{L}_z\hat{L}_+-\hbar\hat{L}_+\; \; \; \; \; \; \; \; 110

Similarly, we find

\small \hat{L}_-\hat{L}_z=\hat{L}_z\hat{L}_-+\hbar\hat{L}_-\; \; \; \; \; \; \; \; 111

If \small Y is an eigenfunction of \small \hat{L}_z with eigenvalue \small c,

\small \hat{L}_z Y=cY\; \; \; \; \; \; \; \; 112

Operating on eq112 with \small \hat{L}_+, we have \small \hat{L}_+\hat{L}_z Y=c\hat{L}_+Y. Substituting eq110 in the this equation and rearranging gives \small \hat{L}_z\hat{L}_+ Y=(c+\hbar)\hat{L}_+Y. So, \small \hat{L}_+Y is an eigenfunction of \small \hat{L}_z with eigenvalue \small (c+\hbar). Operating on eq112 with \small \hat{L}_+ transforms \small Y into another eigenfunction \small \hat{L}_+ Y with an eigenvalue higher than c by \small \hbar. If we operate on eq112 with \small \hat{L}_+ twice, we have

\small \hat{L}_+\hat{L}_z\hat{L}_+ Y=(c+\hbar)\hat{L}_+^{\; 2}Y

\small \left ( \hat{L}_z\hat{L}_+-\hbar\hat{L}_+\right )\hat{L}_+ Y=(c+\hbar)\hat{L}_+^{\; 2}Y

\small \hat{L}_z\hat{L}_+^{\; 2}Y=(c+2\hbar)\hat{L}_+^{\; 2}Y

By mathematical induction,

\small \hat{L}_z\hat{L}_+^{\; k}Y=(c+k\hbar)\hat{L}_+^{\; k}Y \; \; \; \; \; k=0,1,2,\cdots\; \; \; \; \; \; \; \; 113

Similarly, if we operate on eq112 \small k times with \small \hat{L}_-, we have

\small \hat{L}_z\hat{L}_-^{\; k}Y=(c-k\hbar)\hat{L}_-^{\; k}Y \; \; \; \; \; k=0,1,2,\cdots\; \; \; \; \; \; \; \; 114

In other words, the raising operator progressively raises the eigenvalue of \small Y by \small \hbar, while the lowering operator progressively lowers the eigenvalue of \small Y by \small \hbar, i.e. each operator generate a ladder of eigenvalues.

 

Question

Show that \small \hat{L}_+\hat{L}_-=\hat{L}^{2}-\hat{L}_z^{\; 2}+\hbar\hat{L}_z.

Answer

Substituting eq108 and eq109 in \small \hat{L}_+\hat{L}_-,

\small \hat{L}_+\hat{L}_-=\hat{L}_x^{\; 2}-i\hat{L}_x\hat{L}_y+i\hat{L}_y\hat{L}_x+\hat{L}_y^{\; 2}

Substituting eq75 in the above equation and then eq99 in the resultant equation, and noting that \small \left [ \hat{L}_a,\hat{L}_b \right ]=-\left [ \hat{L}_b,\hat{L}_a \right ], results in

\small \hat{L}_+\hat{L}_-=\hat{L}^{2}-\hat{L}_z^{\; 2}+\hbar\hat{L}_z\; \; \; \; \; \; \; \; 115

Similarly,

\small \hat{L}_-\hat{L}_+=\hat{L}^{2}-\hat{L}_z^{\; 2}-\hbar\hat{L}_z\; \; \; \; \; \; \; \; 116

 

If \small Y is simultaneously also an eigenfunction of \small \hat{L}^{2} with eigenvalue \small b,

\small \hat{L}^{2}Y=bY\; \; \; \; \; \; \; \; 117

 

Question

Show that \small \hat{L}^{2} commutes with \small \hat{L}_\pm ^{\; k}.

Answer

For \small k=1,  we have \small \left [ \hat{L}^{2},\hat{L}_ \pm \right ]=\left [ \hat{L}^{2},\hat{L}_ x\pm i\hat{L}_ y\right ]=\left [ \hat{L}^{2},\hat{L}_ x\right ]\pm i\left [ \hat{L}^{2},\hat{L}_ y\right ]. Since \small \left [ \hat{L}^{2},\hat{L}_ x \right ]=0 and \small \left [ \hat{L}^{2},\hat{L}_ y \right ]=0,

\small \left [ \hat{L}^{2},\hat{L}_ \pm \right ]=0

For \small k=2, we apply the identity \small \left [ \hat{A},\hat{B}\hat{C} \right ]=\left [ \hat{A},\hat{B}\right ]\hat{C}+\hat{B}\left [ \hat{A},\hat{C} \right ]:

\small \left [ \hat{L}^{2},\hat{L}_ \pm ^{\; 2}\right ]=\left [ \hat{L}^{2},\hat{L}_ \pm\right ]\hat{L}_ \pm+\hat{L}_ \pm\left [\hat{L}^{2},\hat{L}_ \pm\right]=0

By mathematical induction,

\small \left [ \hat{L}^{2},\hat{L}_\pm^{\; k} \right ]=0\; \; \; \; \; k=0,1,2,\cdots\; \; \; \; \; \; \; \; 118

 

Operating on eq117 with \small \hat{L}_\pm^{\; k} and using eq118

\small \hat{L}_\pm^{\; k} \hat{L}^{2}Y=b\hat{L}_\pm^{\; k}Y

\small \hat{L}^{2}\hat{L}_\pm^{\; k}Y=b\hat{L}_\pm^{\; k}Y\; \; \; \; \; k=0,1,2,\cdots\; \; \; \; \; \; \; \; 119

The raising and lowering operators also apply to the spin angular momentum \small \boldsymbol{\mathit{S}}, because the spin angular momentum component operators are postulated to obey the form of commutation relations as described by eq99, eq100 and eq101 (see eq165, eq166 and eq167). Similarly, the raising and lowering operators apply to the total angular momentum \small \boldsymbol{\mathit{J}} (see Q&A below).

 

Question

Show that \small \left [ \hat{J}_x,\hat{J}_y \right ]=i\hbar\hat{J}_z.

Answer

Let

\small \hat{J}_i=\hat{M}_{1i}+\hat{M}_{2i}\; \; \; \; \; \; \; \; 120

where \small i=x,y,z; \small \hat{M}_{1i} and \small \hat{M}_{2i} are component operators of \small \hat{M}^{(1)} and \small \hat{M}^{(2)} respectively.

\small \hat{M}^{(1)} and \small \hat{M}^{(2)} are operators of two sources of angular momentum, e.g. \small \hat{M}^{(1)} and \small \hat{M}^{(2)} are the orbital angular momentum operator and spin angular momentum operator respectively of a particle.

\small \left [ \hat{J}_x,\hat{J}_y \right ]=\left ( \hat{M}_{1x}+\hat{M}_{2x} \right )\left ( \hat{M}_{1y}+\hat{M}_{2y} \right )-\left ( \hat{M}_{1y}+\hat{M}_{2y} \right )\left ( \hat{M}_{1x}+\hat{M}_{2x} \right )

Expanding and rearranging the RHS of the above equation,

\small \left [ \hat{J}_x,\hat{J}_y \right ]=\left [ \hat{M}_{1x},\hat{M}_{1y} \right ]+\left [ \hat{M}_{2x},\hat{M}_{2y} \right ]+\left [ \hat{M}_{1x},\hat{M}_{2y} \right ]+\left [ \hat{M}_{2x},\hat{M}_{1y} \right ]

Since the 3rd term on RHS of the above equation involves operators acting on different vector spaces (e.g. spatial coordinates vs spin coordinates), they must commute. The same goes for the 4th term. So,

\small \left [ \hat{J}_x,\hat{J}_y \right ]=\left [ \hat{M}_{1x},\hat{M}_{1y} \right ]+\left [ \hat{M}_{2x},\hat{M}_{2y} \right ]

According to eq99 and eq165, \small \left [ \hat{M}_{1x},\hat{M}_{1y} \right ]=i\hbar\hat{M}_{1z} and \small \left [ \hat{M}_{2x},\hat{M}_{2y} \right ]=i\hbar\hat{M}_{2z}. So,

\small \left [ \hat{J}_{x},\hat{J}_{y} \right ]=i\hbar\hat{J}_{z}\; \; \; \; \; \; \; \; 121

Similarly, we have \small \left [ \hat{J}_{y},\hat{J}_{z} \right ]=i\hbar\hat{J}_{x} and \small \left [ \hat{J}_{z},\hat{J}_{x} \right ]=i\hbar\hat{J}_{y}.

 

 

Next article: eigenvalues of quantum orbital angular momentum operators
Previous article: commutation relations of quantum orbital angular momentum operators
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Commutation relations of quantum orbital angular momentum operators

The three orbital angular momentum component operators do not commute with one another.

To show that \left [ \hat{L}_x,\hat{L}_y \right ]\neq 0, we substitute eq72 and eq73 in \left [ \hat{L}_x,\hat{L}_y \right ], giving \left [ \hat{L}_x,\hat{L}_y \right ]=\hbar^{2}\left [ x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}\right ], which when combined with eq74, returns

\left [ \hat{L}_x,\hat{L}_y \right ]=i\hbar\hat{L}_z\; \; \; \; \; \; \; \; 99

Repeating the above procedure for and , we get

\left [ \hat{L}_y,\hat{L}_z \right ]=i\hbar\hat{L}_x\; \; \; \; \; \; \; \; 100

\left [ \hat{L}_z,\hat{L}_x \right ]=i\hbar\hat{L}_y\; \; \; \; \; \; \; \; 101

Hence, each of the three orbital angular momentum component operators do not commute with the other two. Next, to show that \hat{L}^{2} commutes with all 3 orbital angular momentum component operators, we begin with

\small \left [ \hat{L}^{2},\hat{L}_x \right ]=\left (\hat{L}_x^{\; 2}+\hat{L}_y^{\; 2}+\hat{L}_z^{\; 2}\right )\hat{L}_x-\hat{L}_x\left (\hat{L}_x^{\; 2}+\hat{L}_y^{\; 2}+\hat{L}_z^{\; 2}\right )=\left [ \hat{L}_y^{\; 2},\hat{L}_x \right ]+\left [ \hat{L}_z^{\; 2},\hat{L}_x \right ]

Using the identity \small \left [ \hat{L}_a^{\; 2},\hat{L}_b \right ]=\hat{L}_a\left [ \hat{L}_a,\hat{L}_b \right ]+\left [ \hat{L}_a,\hat{L}_b \right ]\hat{L}_a,

\small \left [ \hat{L}^{2},\hat{L}_x \right ]=\hat{L}_y\left [ \hat{L}_y,\hat{L}_x \right ]+\left [ \hat{L}_y,\hat{L}_x \right ]\hat{L}_y +\hat{L}_z\left [ \hat{L}_z,\hat{L}_x \right ]+\left [ \hat{L}_z,\hat{L}_x \right ]\hat{L}_z

Substituting eq99 and eq101 in the above equation, and noting that \small \left [ \hat{L}_a,\hat{L}_b \right ]=-\left [ \hat{L}_b,\hat{L}_a \right ], yields \small \left [ \hat{L}^{2},\hat{L}_x \right ]=0. Repeating the steps for \small \left [ \hat{L}^{2},\hat{L}_y \right ] and \small \left [ \hat{L}^{2},\hat{L}_z \right ] gives

\small \left [ \hat{L}^{2},\hat{L}_x \right ]=0\; \; \; \;\left [ \hat{L}^{2},\hat{L}_y \right ]=0\; \; \; \;\left [ \hat{L}^{2},\hat{L}_z \right ]=0\; \; \; \; \; \; \; \; 102

As mentioned in an earlier article, a common complete set of eigenfunctions can be selected for two operators only if they commute. Therefore, \small \hat{L}^{2} shares a common set of eigenfunctions with each of \small \hat{L}_x, \small \hat{L}_y and \small \hat{L}_z, but we cannot select a common set of eigenfunctions for any pair of angular momentum component operators.

 

Question

Show that each of the three orbital angular momentum component operators commute with \small p^{2}, \small \hat{p}^{2}, \small r, \small r^{2} and \small \frac{1}{r}, where \small p^{2}=p_x^{\; 2}+p_y^{\; 2}+p_z^{\; 2} and \small r^{2}=x^{\; 2}+y^{\; 2}+z^{\; 2}.

Answer

Substituting eq74 in \small \left [ \hat{L}_z,x \right ], \small \left [ \hat{L}_z,y \right ], \small \left [ \hat{L}_z,z \right ], \small \left [ \hat{L}_z,p_x \right ], \small \left [ \hat{L}_z,p_y \right ] and \small \left [ \hat{L}_z,p_z \right ] (noting that \small p_i=m\frac{i}{t}, where \small i=x,y,z), and carrying out the derivatives, yields

\small \left [ \hat{L}_z,x \right ]=i\hbar y\; \; \; \; \;\left [ \hat{L}_z,y \right ]=-i\hbar x\; \; \; \; \;\left [ \hat{L}_z,z \right ]=0

\small \left [ \hat{L}_z,p_x \right ]=i\hbar p_y\; \; \; \; \;\left [ \hat{L}_z,p_y \right ]=-i\hbar p_x\; \; \; \; \;\left [ \hat{L}_z,p_z \right ]=0

Using the identities \small \left [ \hat{A},\hat{B}+\hat{C}+\hat{D} \right ]=\left [ \hat{A},\hat{B} \right ]+\left [ \hat{A},\hat{C} \right ]+\left [ \hat{A},\hat{D} \right ] and \small \left [ \hat{A},\hat{B}\hat{C} \right ]=\left [ \hat{A}\hat{B} \right ]\hat{C}+\hat{B}\left[\hat{A},\hat{C} \right ],

\small \left [ \hat{L}_z,r^{2} \right ]=\left [ \hat{L}_z,x^{2}+y^{2}+z^{2}\right ]=0

\small \left [ \hat{L}_z,r \right ]=\left [ \hat{L}_z,\sqrt{x^{2}+y^{2}+z^{2}}\right ]=0

\small \left [ \hat{L}_z,\frac{1}{r} \right ]=\left [ \hat{L}_z,\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\right ]=0

\small \left [ \hat{L}_z,p^{2} \right ]=\left [ \hat{L}_z,p_x^{\; 2}+p_y^{\; 2}+p_z^{\; 2}\right ]=0\; \; \; \; \; \; \; \; 103

\small \left [ \hat{L}_z,\hat{p}^{2} \right ]=0 can be inferred from eq103. Repeating the same logic for \small \hat{L}_x and \small \hat{L}_y. we have

\small \left [ \hat{L}_i,r^{2} \right ]=0\; \; \; \;\left [ \hat{L}_i,r \right ]=0\; \; \; \;\left [ \hat{L}_i,\frac{1}{r} \right ]=0\; \; \; \;\left [ \hat{L}_i,p^{2} \right ]=0\; \; \; \;\left [ \hat{L}_i,\hat{p}^{2}\right ]=0\; \; \; \; \; \; \; \; 104

 

The commutation relations in the above Q&A are applicable to hydrogenic systems. For a system of 2-electrons, there are cross terms like:

\small \left [ \hat{L}_{1z},\frac{1}{r_2} \right ]=\left [ \hat{L}_{1z},\frac{1}{\sqrt{x_2^{\; 2}+y_2^{\; 2}+z_2^{\; 2}}} \right ]=0\; \; \; \; \; \; \; \; 105

which are useful in determining the commutation relations between \small \hat{L}^{2} and the multi-electron Hamiltonian, for example \small \left [ \hat{L}_{1z}+\hat{L}_{2z},\frac{1}{r_1}+\frac{1}{r_2} \right ]=0.

 

Question

Show that \small \left [ \hat{L}^{2},\hat{p}^{2} \right ]=0 and \small \left [ \hat{L}^{2},\frac{1}{r} \right ]=0.

Answer

Using eq75 and the identities \small \left [ \hat{A},\hat{B}+\hat{C}+\hat{D} \right ]=\left [ \hat{A},\hat{B} \right ]+\left [ \hat{A},\hat{C} \right ]+\left [ \hat{A},\hat{D} \right ] and \small \left [ \hat{A},\hat{B}\hat{C} \right ]=\left [ \hat{A}\hat{B} \right ]\hat{C}+\hat{B}\left[\hat{A},\hat{C} \right ],

\small \left [ \hat{L}^{2},\hat{p}^{2} \right ]=\left [ \hat{L}_x^{\; 2}+\hat{L}_y^{\; 2}+\hat{L}_z^{\; 2},\hat{p}^{2} \right ]=0\; \; \; \; \; \; \; \; 106

\small \left [ \hat{L}^{2},\frac{1}{r} \right ]=\left [ \hat{L}_x^{\; 2}+\hat{L}_y^{\; 2}+\hat{L}_z^{\; 2},\frac{1}{r}\right ]=0\; \; \; \; \; \; \; \; 107

 

 

Next article: quantum orbital angular momentum ladder operators
Previous article: quantum orbital angular momentum operators (spherical coordinates)
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Quantum orbital angular momentum operators (spherical coordinates)

The quantum orbital angular momentum operators in spherical coordinates are derived using the following diagram:

where

x=rsin\theta cos\phi\; \; \; \; y=rsin\theta sin\phi\; \; \; \; z=rcos\theta\; \; \; \; r=\sqrt{x^{2}+y^{2}+z^{2}}\; \; \; \; \; \; \; \; 77

Therefore,

\frac{\partial r}{\partial x}=\frac{\partial \sqrt{x^{2}+y^{2}+z^{2}}}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x}{r}=sin\theta cos\phi\; \; \; \; \; \; \; \; 78

Similarly,

\frac{\partial r}{\partial y}=sin\theta sin\phi\; \; \; \; \; \; \; \; 79

\frac{\partial r}{\partial z}= cos\theta\; \; \; \; \; \; \; \; 80

Furthermore, by differentiating cos\theta=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} implicitly with respect to x and separately with respect to y, and rearranging, we have

\frac{\partial\theta}{\partial x}=\frac{cos\theta cos\phi}{r}\; \; \; \; \; \; \; \; 81

\frac{\partial\theta}{\partial y}=\frac{cos\theta sin\phi}{r}\; \; \; \; \; \; \; \; 82

 

Question

Show that sin\phi=\frac{y}{\sqrt{x^{2}+y^{2}}}, cos\phi=\frac{x}{\sqrt{x^{2}+y^{2}}} and sin\theta=\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}+z^{2}}}.

Answer

To find expressions for sin\phi and cos\phi, we let \theta=\frac{\pi}{2} for the first three equations of eq77, which gives us x=rcos\phi, y=rsin\phi and z=0. So,

cos\phi=\frac{x}{\sqrt{x^{2}+y^{2}}}\; \; \; \; \; \;sin\phi=\frac{y}{\sqrt{x^{2}+y^{2}}}

Substituting these two expressions back into either the first or second equation of eq77, we have

sin\theta=\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}+z^{2}}}

 

Implicit differentiation of sin\theta=\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}+z^{2}}}sin\phi=\frac{y}{\sqrt{x^{2}+y^{2}}} and cos\phi=\frac{x}{\sqrt{x^{2}+y^{2}}} with respect to z, x and y respectively gives

\frac{\partial\theta}{\partial z}=-\frac{sin\theta}{r}\; \; \; \; \; \; \; \; 83

\frac{\partial\phi}{\partial x}=-\frac{sin\phi}{rsin\theta}\; \; \; \; \; \; \; \; 84

\frac{\partial\phi}{\partial y}=\frac{cos\phi}{rsin\theta}\; \; \; \; \; \; \; \; 85

Since \phi is independent of z

\frac{\partial\phi}{\partial z}=0\; \; \; \; \; \; \; \; 86

Applying the multivariable chain rule to f\left ( r,\theta,\phi \right ), we have:

\frac{\partial}{\partial x}=\frac{\partial r}{\partial x}\frac{\partial}{\partial r}+\frac{\partial\theta}{\partial x}\frac{\partial}{\partial \theta}+\frac{\partial\phi}{\partial x}\frac{\partial}{\partial \phi}\; \; \; \; \; \; \; \; 87

\frac{\partial}{\partial y}=\frac{\partial r}{\partial y}\frac{\partial}{\partial r}+\frac{\partial\theta}{\partial y}\frac{\partial}{\partial \theta}+\frac{\partial\phi}{\partial y}\frac{\partial}{\partial \phi}\; \; \; \; \; \; \; \; 88

\frac{\partial}{\partial z}=\frac{\partial r}{\partial z}\frac{\partial}{\partial r}+\frac{\partial\theta}{\partial z}\frac{\partial}{\partial \theta}+\frac{\partial\phi}{\partial z}\frac{\partial}{\partial \phi}\; \; \; \; \; \; \; \; 89

Substitute i) eq78, eq81 and eq84 in eq87, ii) eq79, eq82 and eq85 in eq88 and iii) eq80, eq83 and eq86 in eq89, we have

\frac{\partial}{\partial x}=sin\theta cos\phi\frac{\partial}{\partial r}+\frac{cos\theta cos\phi}{r}\frac{\partial}{\partial \theta}-\frac{sin\phi }{rsin\theta}\frac{\partial}{\partial \phi}\; \; \; \; \; \; \; \; \; \; 90

\frac{\partial}{\partial y}=sin\theta sin\phi\frac{\partial}{\partial r}+\frac{cos\theta sin\phi}{r}\frac{\partial}{\partial \theta}+\frac{cos\phi }{rsin\theta}\frac{\partial}{\partial \phi}\; \; \; \; \; \; \; \; \; \; 91

\frac{\partial}{\partial z}=cos\theta \frac{\partial}{\partial r}-\frac{sin\theta}{r}\frac{\partial}{\partial \theta}\; \; \; \; \; \; \; \; \; \; 92

respectively.

Substitute eq77, eq90, eq91 and eq92 in eq72, eq73 and eq74, we have

\hat{L}_x=\frac{\hbar}{i}\left ( -sin\phi\frac{\partial}{\partial \theta}-\frac{cos\theta cos\phi}{sin\theta}\frac{\partial}{\partial \phi}\right )\; \; \; \; \; \; \; \; 93

\hat{L}_y=\frac{\hbar}{i}\left (cos\phi\frac{\partial}{\partial \theta}-\frac{cos\theta sin\phi}{sin\theta}\frac{\partial}{\partial \phi}\right )\; \; \; \; \; \; \; \; 94

\hat{L}_z=\frac{\hbar}{i}\frac{\partial}{\partial \phi}\; \; \; \; \; \; \; \; 95

respectively.

Substitute eq93, eq94 and eq95 in eq75, we have, with some algebra

\hat{L}^{2}=-\hbar^{2}\left ( \frac{\partial^{2}}{\partial \theta^{2}}+\frac{1}{sin^{2}\theta}\frac{\partial^{2}}{\partial \phi^{2}}+\frac{cos\theta}{sin\theta}\frac{\partial}{\partial \theta}\right )

or equivalently

\hat{L}^{2}=-\hbar^{2}\left \[ \frac{1}{sin^{2}\theta}\frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{sin\theta}\frac{\partial}{\partial \theta}\left ( sin\theta\frac{\partial}{\partial \theta}\right )\right ]\; \; \; \; \; \; \; \; 96

\hat{L}^{2} is the quantum orbital angular momentum operator and each of its eigenvalues is the square of the orbital angular momentum of an electron.

Question

Show that eq76 is \frac{\hbar}{i}\left ( \boldsymbol{\mathit{\phi}}\frac{\partial}{\partial \theta}- \boldsymbol{\mathit{\theta}}\frac{1}{sin \theta}\frac{\partial}{\partial \phi}\right ) in spherical coordinates.

Answer

Substitute eq93, eq94, eq95 and unit vectors in spherical coordinates \boldsymbol{\mathit{i}}= \boldsymbol{\mathit{r}}sin\theta cos\phi+ \boldsymbol{\mathit{\theta}}cos\phi cos\theta-\boldsymbol{\mathit{\phi}}sin\phi, \boldsymbol{\mathit{j}}= \boldsymbol{\mathit{r}}sin\theta sin\phi+ \boldsymbol{\mathit{\theta}}cos\theta sin\phi-\boldsymbol{\mathit{\phi}}cos\phi and \boldsymbol{\mathit{k}}= \boldsymbol{\mathit{r}}cos\theta- \boldsymbol{\mathit{\theta}}sin\theta in eq76. we have, after some algebra, we have

\boldsymbol{\mathit{\hat{L}}}=\frac{\hbar}{i}\left ( \boldsymbol{\mathit{\phi}}\frac{\partial}{\partial\theta}- \boldsymbol{\mathit{\theta}}\frac{1}{sin\theta}\frac{\partial}{\partial\phi}\right )\; \; \; \; \; \; \; \; 97

 

Question

Show that \boldsymbol{\mathit{\hat{L}}}\cdot\boldsymbol{\mathit{\hat{L}}}=\hat{L}^{2}.

Answer

Substituting eq97 in \hat{L}^{2}=\boldsymbol{\mathit{L}}\cdot\boldsymbol{\mathit{L}} and using \frac{\partial\boldsymbol{\mathit{\phi}}}{\partial\theta}=0, \frac{\partial\boldsymbol{\mathit{\theta}}}{\partial\theta}=-\boldsymbol{\mathit{r}}, \frac{\partial\boldsymbol{\mathit{\phi}}}{\partial\phi}=-\boldsymbol{\mathit{r}} sin\theta-\boldsymbol{\mathit{\theta}}cos\theta and \frac{\partial\boldsymbol{\mathit{\theta}}}{\partial\phi}=\boldsymbol{\mathit{\phi}}cos\theta, we have

\hat{L}^{2}=\boldsymbol{\mathit{L}}\cdot\boldsymbol{\mathit{L}}=-\hbar^{2}\left [\frac{\partial^{2}}{\partial\theta^{2}}+\frac{cos\theta}{sin\theta}\frac{\partial}{\partial\theta}+\frac{1}{sin^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}\right ]\; \; \; \; \; \; \; \; 98

 

 

Next article: commutation relations of quantum orbital angular momentum operators
Previous article: quantum orbital angular momentum operators (cartesian coordinates)
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Quantum orbital angular momentum operators (Cartesian coordinates)

The quantum orbital angular momentum operators in Cartesian coordinates are derived from the classical angular momentum components

L_x=r_yp_z-r_zp_y

L_y=r_zp_x-r_xp_z

L_z=r_xp_y-r_yp_x

by replacing the position and linear momentum components with their corresponding operators. Since r_x,r_y,r_z are position components with position operators \hat{r}_x,\hat{r}_y,\hat{r}_z respectively, and p_x,p_y,p_z are linear momentum components with linear momentum operators \frac{\hbar}{i}\frac{\partial}{\partial r_x},\frac{\hbar}{i}\frac{\partial}{\partial r_y},\frac{\hbar}{i}\frac{\partial}{\partial r_z} respectively (see eq4), we have

\hat{L}_x=\frac{\hbar}{i}\left (r_y \frac{\partial}{\partial r_z}-r_z\frac{\partial}{\partial r_y}\right )\; \; \; \; or\; \; \; \;\hat{L}_x=\frac{\hbar}{i}\left (y \frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right )\; \; \; \; \; \; \; \; 72

\hat{L}_y=\frac{\hbar}{i}\left (r_z \frac{\partial}{\partial r_x}-r_x\frac{\partial}{\partial r_z}\right )\; \; \; \; or\; \; \; \;\hat{L}_y=\frac{\hbar}{i}\left (z \frac{\partial}{\partial x}-x\frac{\partial}{\partial z}\right )\; \; \; \; \; \; \; \; 73

\hat{L}_z=\frac{\hbar}{i}\left (r_x \frac{\partial}{\partial r_y}-r_y\frac{\partial}{\partial r_x}\right )\; \; \; \; or\; \; \; \;\hat{L}_z=\frac{\hbar}{i}\left (x \frac{\partial}{\partial y}-y\frac{\partial}{\partial x}\right )\; \; \; \; \; \; \; \; 74

From eq70, we have

\hat{L}^{2}=\hat{L}_x^{\, \, 2}+\hat{L}_y^{\, \, 2}+\hat{L}_z^{\, \, 2}\; \; \; \; \; \; \; \; 75

Since \hat{L}^{ 2} is defined as the operator for the square of the magnitude of , each of its eigenvalues is the square of the magnitude of the orbital angular momentum of an electron. 

 

Question

Can we construct an angular momentum operator using \boldsymbol{\mathit{L}}=\boldsymbol{\mathit{i}}L_x+\boldsymbol{\mathit{j}}L_y+\boldsymbol{\mathit{k}}L_z, such that

\hat{\boldsymbol{\mathit{L}}}=\boldsymbol{\mathit{i}}\hat{L}_x+\boldsymbol{\mathit{j}}\hat{L}_y+\boldsymbol{\mathit{k}}\hat{L}_z\; \; \; \; \; \; \; \; 76

which is then used to generate eigenvalues?

Answer

\hat{L}^{2}, a scalar operator, is preferred over \hat{\boldsymbol{\mathit{L}}}, a vector operator, because it easier to manipulate in quantum computations. \hat{L}^{2} commutes with its component operators, allowing us to simultaneously determine the eigenvalues of \hat{L}^{2} and say, \hat{L}_z (which is useful, for example in the verification of singlet and triplet eigenstates). It also commutes with the time-independent Hamiltonian \hat{H}, also a scalar operator, implying that we can select a common complete set of eigenfunctions for \hat{L}^{2} and \hat{H}. Note that \hat{L}^{2} has a form that is consistent with the angular portion of \hat{H} in spherical coordinates (compare eq49 with eq96). An eigenvalue of \hat{H}_{angular} is the energy associated with the angular motion of an electron, while the square root of an eigenvalue of \hat{L}^{2} is the magnitude of the orbital angular momentum of an electron in a particular state.

 

 

Next article: quantum orbital angular momentum operators (spherical coordinates)
Previous article: classical orbital angular momentum
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Classical orbital angular momentum

The classical definition of angular momentum is a pseudo-vector, which can be separated into its 3 components in Cartesian coordinates as follows:

If \boldsymbol{\mathit{A}} and \boldsymbol{\mathit{B}} are two vectors

\boldsymbol{\mathit{A}}=\boldsymbol{\mathit{i}}A_x+\boldsymbol{\mathit{j}}A_y+\boldsymbol{\mathit{k}}A_z\; \; \; \; \; \;\boldsymbol{\mathit{B}}=\boldsymbol{\mathit{i}}B_x+\boldsymbol{\mathit{j}}B_y+\boldsymbol{\mathit{k}}B_z

where A_x is the component of A in the x-direction and \boldsymbol{\mathit{i}},\boldsymbol{\mathit{j}},\boldsymbol{\mathit{k}} are unit vectors in the x,y,z directions.

The cross product of the two vectors is:

\boldsymbol{\mathit{C}}=\boldsymbol{\mathit{A}}\times\boldsymbol{\mathit{B}}=\boldsymbol{\mathit{i}}(A_yB_z-A_zB_y)+\boldsymbol{\mathit{j}}(A_zB_x-A_xB_z)+\boldsymbol{\mathit{k}}(A_xB_y-A_yB_x)\; \; \; \; \; \; \; \; 69

Since \boldsymbol{\mathit{C}}=\boldsymbol{\mathit{i}}C_x+\boldsymbol{\mathit{j}}C_y+\boldsymbol{\mathit{k}}C_z

C_x=A_yB_z-A_zB_y

C_y=A_zB_x-A_xB_z

C_z=A_xB_y-A_yB_x

Comparing eq59a and eq69,

\boldsymbol{\mathit{L}}=\boldsymbol{\mathit{r}}\times\boldsymbol{\mathit{p}}=\boldsymbol{\mathit{i}}(r_yp_z-r_zp_y)+\boldsymbol{\mathit{j}}(r_zp_x-r_xp_z)+\boldsymbol{\mathit{k}}(r_xp_y-r_yp_x)

and

L_x=r_yp_z-r_zp_y

L_y=r_zp_x-r_xp_z

L_z=r_xp_y-r_yp_x

L_x, L_y and L_z are the classical orbital angular momenta about the x-axis, y-axis and z-axis respectively. Since the magnitude of a vector \boldsymbol{\mathit{v}}=x\boldsymbol{\mathit{i}}+y\boldsymbol{\mathit{j}}+z\boldsymbol{\mathit{k}} is \vert\boldsymbol{\mathit{v}}\vert=\sqrt{x^{2}+y^{2}+z^{2}}, we have \vert\boldsymbol{\mathit{L}}\vert^{2}=L_{x}^{\, \, 2}+L_{y}^{\, \, 2}+L_{z}^{\, \, 2} or simply

L^{2}=L_{x}^{\, \, 2}+L_{y}^{\, \, 2}+L_{z}^{\, \, 2}\; \; \; \; \; \; \; \; 70

In other words, L^{2} is square of the magnitude of the vector \boldsymbol{\mathit{L}}. The significance of L^{2} will be explored in subsequent articles.

 

Question

Show that \boldsymbol{\mathit{\tau}}=\frac{d\boldsymbol{\mathit{L}}}{dt}.

Answer

From eq59a,

\frac{d\boldsymbol{\mathit{L}}}{dt}=\boldsymbol{\mathit{r}}\times\frac{d\boldsymbol{\mathit{p}}}{dt}+\boldsymbol{\mathit{p}}\times\frac{d\boldsymbol{\mathit{r}}}{dt}=\boldsymbol{\mathit{r}}\times m\frac{d\boldsymbol{\mathit{v}}}{dt}+m\boldsymbol{\mathit{v}}\times\boldsymbol{\mathit{v}}=\boldsymbol{\mathit{r}}\times\boldsymbol{\mathit{F}}=\boldsymbol{\mathit{\tau}}

Hence,

\boldsymbol{\mathit{\tau}}=\frac{d\boldsymbol{\mathit{L}}}{dt}\; \; \; \; \; \; \; \; 71

 

Next article: quantum orbital angular momentum operators (Cartesian coordinates)
Previous article: relation between magnetic dipole moment and angular momentum
Content page of quantum mechanics
Content page of advanced chemistry
Main content page

Relation between magnetic dipole moment and angular momentum

In classical electrodynamics, a magnetic dipole moment \mu is associated with a current loop (see diagram below), and represents the magnitude and orientation of a magnetic dipole. It is a pseudo-vector, whose direction is perpendicular to the plane of the loop and given by the right hand thumb rule.

The magnitude of a magnetic dipole moment of a current loop is defined as

\mu=IA\; \; \; \; \; \; \; \; 60

where I is current, and A is the area of the loop.

Rewriting eq60 in terms of I=\frac{q}{t}=\frac{qv_{\perp}}{2\pi r} (where q is charge, t is time and v_{\perp} is the tangential velocity of the charged particle) and using A=\pi r^{2}, we have \mu=\frac{q}{2m}rmv_{\perp}, where m is the mass of the charged particle. Substitute eq59 in \mu=\frac{q}{2m}rmv_{\perp}, we have the relation between magnetic dipole moment and angular momentum:

\boldsymbol{\mathit{\mu}}=\gamma\boldsymbol{\mathit{L}}\; \; \; \; \; \; \; \; 61

where \gamma=\frac{q}{2m} is the classical gyromagnetic ratio.

When placed in an external magnetic field , the magnetic dipole moment experiences a torque, whose energy  is

U=-\boldsymbol{\mathit{\mu}}\cdot\boldsymbol{\mathit{B}}\; \; \; \; \; \; \; \; 62

 

Question

How is eq62 derived?

Answer

In order to rotate a current loop, we must do work W against the torque \tau due to the magnetic field \boldsymbol{\mathit{B}}. For a rotating system (see diagram I below), W=-\int F_{\perp}ds, where according to convention, the negative sign is added so that work on the system by the field is positive.

For small \theta, ds=rd\theta. Since \boldsymbol{\mathit{\tau}}=\boldsymbol{\mathit{r}}\times\boldsymbol{\mathit{F}} and W=-\Delta U, we have

U_f-U_i=\int F_{\perp}ds=\int_{\theta_i}^{\theta_f}Fsin\theta rd\theta=\int_{\theta_i}^{\theta_f}\tau d\theta\; \; \; \; \; \; \; \; 62a

Diagram II below shows a square current loop with side 1 parallel to side 3 and side 2 parallel to side 4 (not shown in diagram). The length of each side is b.

Since \tau=r\times F=\frac{b}{2}Fsin\theta+\frac{b}{2}Fsin\theta and F=BIb (\theta=90^{\circ}),

U_f-U_i=\int_{\theta_i}^{\theta_f}IBb^{2}sin\theta\, d\theta=IA B\left (- cos\theta_f+cos\theta_i \right)\; \; \; \; \; \; \; \; 62b

where A is the area of the loop.

Substitute eq60 in the above equation,

U_f-U_i=\mu B\left (cos\theta_i-cos\theta_f \right)\; \; \; \; \; \; \; \; 63

Comparing eq62a and eq62b, torque can also be expressed as

\boldsymbol{\mathit{\tau}}=BIAsin\theta=\boldsymbol{\mathit{\mu}}\times\boldsymbol{\mathit{B}}\; \; \; \; \; \; \; \; 64

The torque exerted by the magnetic field on the magnetic dipole tends to rotate the dipole towards a lower energy state. So, we let \theta_i=90^{\circ} with U_i=0 and eq63 becomes U_f=-\mu Bcos\theta_f, or simply:

U=-\boldsymbol{\mathit{\mu}}\cdot \boldsymbol{\mathit{B}}\; \; \; \; \; \; \; \; 65

 

Other than a torque, the external magnetic field may exert another force on the current loop. For a magnetic field pointing in the z-direction, \boldsymbol{\mathit{B}}=B_z(x,y,z)\boldsymbol{\mathit{k}}, where B_z(x,y,z) is a scalar function. We substitute eq65 in F_z=-\frac{\partial U}{\partial z} to give

\boldsymbol{\mathit{F_z}}=\frac{\partial(\boldsymbol{\mathit{\mu}}\cdot\boldsymbol{\mathit{B}})}{\partial z}=\frac{\partial[(\mu_x\boldsymbol{\mathit{i}}+\mu_y\boldsymbol{\mathit{j}}+\mu_z\boldsymbol{\mathit{k}})\cdot B_z(x,y,z)\boldsymbol{\mathit{k}}]}{\partial z}=\mu_z\frac{\partial B_z(x,y,z)}{\partial z}\; \; \; \; \; \; \; \; 66

where \boldsymbol{\mathit{i}}, \boldsymbol{\mathit{j}} and \boldsymbol{\mathit{k}} are unit vectors, and \frac{\partial B_z(x,y,z)}{\partial z} is the gradient of the external magnetic field along the z-direction.

For a uniform field, B_z(x,y,z)=B_0 (i.e. a constant) and \boldsymbol{\mathit{F_z}}=0; while for an inhomogenous field, B_z(x,y,z)=B_0+\alpha z, where \alpha is a scalar representing the change in B_0 along the z-axis, and \boldsymbol{\mathit{F_z}}\neq 0.

Substituting eq61 in eq62,

U=-\gamma\boldsymbol{\mathit{B}}\cdot\boldsymbol{\mathit{L}}\; \; \; \; \; \; \; \; 67

For an inhomogenous magnetic field pointing in the z-direction, the above equation becomes

U=-\gamma(B_0+\alpha z)\boldsymbol{\mathit{k}}\cdot(L_x\boldsymbol{\mathit{i}}+L_y\boldsymbol{\mathit{j}}+L_z\boldsymbol{\mathit{k}})=-\gamma(B_0+\alpha z)L_z\; \; \; \; \; \; \; \; 68

Eq68 is used as a starting point in analysing results from the Stern-Gerlach experiment.

 

Question

Does the magnetic field \boldsymbol{\mathit{B}}=(B_0+\alpha z)\boldsymbol{\mathit{k}} violate Maxwell’s 2nd equation of \nabla\cdot\boldsymbol{\mathit{B}}=0 where \nabla=\frac{\partial}{\partial x}\boldsymbol{\mathit{i}}+\frac{\partial}{\partial y}\boldsymbol{\mathit{j}}+\frac{\partial}{\partial z}\boldsymbol{\mathit{k}}?

Answer

The field should be \boldsymbol{\mathit{B}}=-\alpha x\boldsymbol{\mathit{i}}+(B_0+\alpha z)\boldsymbol{\mathit{k}}, which satisfies \nabla\cdot\boldsymbol{\mathit{B}}. However, the precession of the spin magnetic moment of a silver atom around B_0 in the Stern-Gerlach experiment is so fast that the x-component of the spin moment averages to zero, resulting in an effective field of \boldsymbol{\mathit{B}}=(B_0+\alpha z)\boldsymbol{\mathit{k}} interacting with the atom.

 

Question

Why is \nabla\cdot\boldsymbol{\mathit{B}}=0?

Answer

A simple way of showing \nabla\cdot\boldsymbol{\mathit{B}}=0 is to consider a two-dimensional diagrammatic representation of the vector function \boldsymbol{\mathit{B}}=-y\boldsymbol{\mathit{i}}+x\boldsymbol{\mathit{j}} below, where each point in the two-dimensional space is associated with a vector.

When y=0, the successive points in the negative x direction and the positive x direction are associated with the vectors -\boldsymbol{\mathit{j}},-2\boldsymbol{\mathit{j}},\cdots and \boldsymbol{\mathit{j}},2\boldsymbol{\mathit{j}},\cdots respectively. Similarly, when x=0, the successive points in the negative y direction and the positive y direction are associated with the vectors \boldsymbol{\mathit{i}},2\boldsymbol{\mathit{i}},\cdots and -\boldsymbol{\mathit{i}},-2\boldsymbol{\mathit{i}},\cdots respectively. Clearly, \nabla\cdot\boldsymbol{\mathit{B}}=0.

 

 

Next article: classical orbital angular momentum
Previous article: classical angular momentum
Content page of quantum mechanics
Content page of advanced chemistry
Main content page
Mono Quiz